cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A207969 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^4 * x^n/n ).

Original entry on oeis.org

1, 5, 15, 60, 295, 1625, 9430, 56465, 345010, 2139595, 13419500, 84926105, 541398665, 3472389210, 22385362895, 144945232375, 942089445030, 6143582084115, 40181143112035, 263482860974570, 1731780213622125, 11406235045261205, 75268685723935940
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Conjecture: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k) * x^n/n ) is an integer series for integers k>=0.
Note that exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k+1) * x^n/n ) is not an integer series for integers k.
Note that exp( Sum_{n>=1} Fibonacci(n)^(2*k) * x^n/n ) is not an integer series for integers k.

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + 295*x^4 + 1625*x^5 + 9430*x^6 +...
such that
log(A(x))/5 = x + x^2/2 + 2^4*x^3/3 + 3^4*x^4/4 + 5^4*x^5/5 + 8^4*x^6/6 + 13^4*x^7/7 +...+ Fibonacci(n)^4*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^4*x^k/k)+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

The o.g.f. A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + ... is an algebraic function: A(x)^5 = (1 + 3*x + x^2)^4/( (1 - 7*x + x^2)*(1 - 2*x + x^2)^3 ). Cf. A203804. - Peter Bala, Apr 03 2014
a(n) ~ 2^(4/5) * 5^(1/10) * phi^(4*n) / (Gamma(1/5) * 3^(1/5) * n^(4/5)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 18 2020

A207970 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^6 * x^n/n ).

Original entry on oeis.org

1, 5, 15, 140, 1505, 21875, 319620, 4936985, 77358485, 1236083870, 19982821875, 326511608255, 5379199407890, 89249496596015, 1489580814490755, 24988546214618750, 421055477328447620, 7122346563647277860, 120891417096833214485, 2058225554792946621495
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Conjecture: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k) * x^n/n ) is an integer series for integers k >= 0.
Note that exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k+1) * x^n/n ) is not an integer series for integers k.
Note that exp( Sum_{n>=1} Fibonacci(n)^(2*k) * x^n/n ) is not an integer series for integers k.

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 140*x^3 + 1505*x^4 + 21875*x^5 + 319620*x^6 + ...
such that
log(A(x))/5 = x + x^2/2 + 2^6*x^3/3 + 3^6*x^4/4 + 5^6*x^5/5 + 8^6*x^6/6 + 13^6*x^7/7 + ... + Fibonacci(n)^6*x^n/n + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^6*x^k/k)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

Formula

The o.g.f. A(x) = 1 + 5*x + 15*x^2 + 140*x^3 + ... is an algebraic function: A(x)^25 = ( (1 + 2*x + x^2)^10*(1 + 7*x + x^2)^6 )/( (1 - 3*x + x^2)^15*(1 - 18*x + x^2) ). Cf. A203806. - Peter Bala, Apr 03 2014
a(n) ~ 2^(17/25) * 5^(13/50) * phi^(6*n) / (Gamma(1/25) * 3^(3/5) * n^(24/25)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 18 2020

A207972 Expansion of g.f.: exp( Sum_{n>=1} 5*Fibonacci(n^2) * x^n/n ).

Original entry on oeis.org

1, 5, 20, 115, 1665, 82650, 12847310, 5620114060, 6659421195205, 21082748688390045, 177217804775828062850, 3941798437750184226876305, 231505293200405380457355524620, 35848160499603817968830380832049915, 14619744406297572472084577939841875791890
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Moss and Ward prove that this is an integral sequence. - Peter Bala, Nov 28 2022
Let A(x) be the g.f. for this sequence. Note that the expansion of A(x)^(1/5) = exp( Sum_{n>=1} Fibonacci(n^2) * x^n/n ) does not have integer coefficients.

Examples

			G.f.: A(x) = 1 + 5*x + 20*x^2 + 115*x^3 + 1665*x^4 + 82650*x^5 + ...
such that
log(A(x))/5 = x + 3*x^2/2 + 34*x^3/3 + 987*x^4/4 + 75025*x^5/5 + 14930352*x^6/6 + 7778742049*x^7/7 + ... + Fibonacci(n^2)*x^n/n + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,16,print1(a(n),", "))

A211893 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^n * x^n/n ), where Jacobsthal(n) = A001045(n).

Original entry on oeis.org

1, 3, 6, 36, 561, 98211, 43176384, 116622937722, 1022189210900601, 41675008108242048327, 6377839090284322052067558, 4114890941608928235401688095580, 10460015732506081308723488849683574907, 108482611110966450613465001912856742180485969
Offset: 0

Views

Author

Paul D. Hanna, Apr 24 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

Examples

			G.f.: A(x) = 1 + 3*x + 6*x^2 + 36*x^3 + 561*x^4 + 98211*x^5 + 43176384*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^3*x^3/3 + 5^4*x^4/4 + 11^5*x^5/5 + 21^6*x^6/6 + 43^7*x^7/7 +...+ Jacobsthal(n)^n*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
		

Crossrefs

Cf. A231292 (Jacobsthal(n)^n).

Programs

  • PARI
    {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^k*x^k/k)+x*O(x^n)), n)}
    for(n=0, 16, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^n / 3^(n-1) * x^n/n ).
Showing 1-4 of 4 results.