cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283298 Diagonal of the Euler-Seidel matrix for the Catalan numbers.

Original entry on oeis.org

1, 3, 26, 305, 4120, 60398, 934064, 15000903, 247766620, 4182015080, 71816825856, 1250772245698, 22039796891026, 392213323252200, 7038863826811100, 127248841020380105, 2315130641074743540, 42358284517663463380, 778876539384226875800
Offset: 0

Views

Author

R. J. Mathar, Jul 20 2017

Keywords

Crossrefs

Central elements of rows in A106534, A280470.
Cf. A000108.

Programs

  • Maple
    A000108 := n-> binomial(2*n, n)/(n+1):
    A283298 := proc(n)
        add(binomial(n,i)*A000108(n+i),i=0..n) ;
    end proc:
    seq(A283298(n),n=0..30) ;
  • Mathematica
    Table[Sum[Binomial[n, i] CatalanNumber[n + i], {i, 0, n}], {n, 0, 50}] (* Indranil Ghosh, Jul 20 2017 *)
  • PARI
    C(n) = binomial(2*n,n)/(n+1); \\ A000108
    a(n) = sum(i=0, n, binomial(n,i) * C(n+i)); \\ Michel Marcus, Nov 12 2022
  • Python
    from sympy import binomial, catalan
    def a(n): return sum(binomial(n, i)*catalan(n + i) for i in range(n + 1))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 20 2017
    

Formula

a(n) = Sum_{i=0..n} binomial(n,i) * A000108(n+i).
D-finite with recurrence 2*n*(2*n+1)*(9*n-11)*a(n) +(-711*n^3+1589*n^2-986*n+144)*a(n-1) -10*(n-1)*(9*n-2)*(2*n-3)*a(n-2)=0.
a(n) ~ 2^(2*n) * 5^(n + 3/2) / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 01 2025
Showing 1-1 of 1 results.