A111785 T(n,k) are coefficients used for power series inversion (sometimes called reversion), n >= 0, k = 1..A000041(n), read by rows.
1, -1, -1, 2, -1, 5, -5, -1, 6, 3, -21, 14, -1, 7, 7, -28, -28, 84, -42, -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132, -1, 9, 9, 9, -45, -90, -45, -45, 165, 495, 165, -495, -990, 1287, -429, -1, 10, 10, 10, 5, -55, -110, -110, -55, -55, 220, 660, 330, 660, 55, -715, -2860, -1430, 2002, 5005, -5005, 1430, -1, 11, 11
Offset: 0
Examples
[ +1]; [ -1]; [ -1, 2]; [ -1, 5, -5]; [ -1, 6, 3, -21, 14]; [ -1, 7, 7, -28, -28, 84, -42]; [ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132]; ... The seventh row, [ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132], stands for the row polynomial P(6) with monomials in lexicographically ascending order P(6) = -1*g[0]^5*g[6] + 8*g[0]^4*g[1]*g[5] + 8*g[0]^4*g[2]*g[4] + 4*g[0]^4*g[3]^2 - 36*g[0]^3*g[1]^2*g[4] - 72*g[0]^3*g[1]*g[2]*g[3] - 12*g[0]^3*g[2]^3 + 120*g[0]^2*g[1]^3*g[3] + 180*g[0]^2*g[1]^2*g[2]^2 - 330*g[0]*g[1]^4*g[2] + 132*g[1]^6 = (1/7!)*(differentiate 1/G(x)^7 six times and evaluate at x = 0). This gives the coefficient of y^7 of F^{(-1)}(y).
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 150, Table 4.1 (unsigned).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16, 3.6.25.
- Bartomeu Fiol and Alan Rios Fukelman, On the planar free energy of matrix models, arXiv:2111.14783 [hep-th], 2021. See also J. High Energy Phys. (2022) Iss. 2.
- Wolfdieter Lang, First 10 rows and a formula.
- Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
- Eric Weisstein's World of Mathematics, Series Reversion
Crossrefs
Programs
-
Mathematica
(* Graded Colex Ordering: by length, then reverse lexicographic by digit *) ClearAll[P, L, T, c, g] P[0] := 1 P[n_] := -Total[ Multinomial @@ # c[Total@# - 1] Times @@ Power[g[#] & /@ Range[0, n - 1], #] & /@ Table[ Count[p, i], {p, Drop[IntegerPartitions[n + 1], 1]}, {i, n}]] L[n_] := Join @@ GatherBy[IntegerPartitions[n], Length] T[1] := {1} T[n_] := Coefficient[ Do[g[i] = P[i], {i, 0, n - 1}]; P[n - 1], #] & /@ (Times @@@ Map[c, L[n - 1], {2}]) Array[T, 9] // Flatten (* Bradley Klee and Michael Somos, Apr 14 2017 *)
-
PARI
sv(n)={eval(Str("'s",n))} Trm(q,v)={my(S=Set(v)); for(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); q=polcoef(q, c, sv(x))); q} Q(n)={polcoef(serreverse(x + x*sum(k=1, n, x^k*sv(k), O(x*x^n)))/x, n)} row(n)={my(q=Q(n)); [Trm(q,Vec(v)) | v<-partitions(n)]} \\ Andrew Howroyd, Feb 01 2022
-
PARI
C(v)={my(n=vecsum(v), S=Set(v)); (-1)^#v*(n+#v)!/(n+1)!/prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); c!)} row(n)=[C(Vec(p)) | p<-partitions(n)] { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
-
Sage
def A111785_list(dim): # returns the first dim rows C = [[0 for k in range(m+1)] for m in range(dim+1)] C[0][0] = 1; F = [1]; i = 1 X = lambda n: 1 if n == 1 else var('x'+str(n)) while i <= dim: F.append(F[i-1]*X(i)); i += 1 for m in (1..dim): C[m][m] = -C[m-1][m-1]/F[1] for k in range(m-1, 0, -1): C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1] for i in (2..m-k+1)))/F[1] P = [expand((-1)^m*C[m][1]) for m in (1..dim)] R = PolynomialRing(ZZ, [X(i) for i in (2..dim)], order='lex') return [R(p).coefficients()[::-1] for p in P] A111785_list(8) # Peter Luschny, Apr 14 2017
Formula
For row n >= 1 the row polynomial in the variables g[1], ..., g[n] is P(n) = (1/(n+1)!)*(d^n/dx^n)(1/G(x)^(n+1))|{x=0}. P(0):=1. (d^k/dx^k)G(x)|{x=0} = k!*g[k], k>=1; G(0)=1.
a(n, k) is the coefficient in P(n) of g[1]^e(k, 1)*g[2]^e(k, 2)*..*g[n]^e(k, n) with the k-th partition of n written as [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] in Abramowitz-Stegun order (e(k, j) >= 0; if e(k, j)=0 then j^0 is not recorded).
T(n,k) = (-1)^j*(n+j)!/((n+1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 01 2022
Extensions
Name edited by Andrew Howroyd, Feb 02 2022
Comments