cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001906 F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).

Original entry on oeis.org

0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term, same as A088305.
Second column of array A102310 and of A028412.
Numbers k such that 5*k^2 + 4 is a square. - Gregory V. Richardson, Oct 13 2002
Apart from initial terms, also Pisot sequences E(3,8), P(3,8), T(3,8). See A008776 for definitions of Pisot sequences.
Binomial transform of A000045. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 in the path graph P_4 from one end to the other one. Example: a(2)=3 because in the path ABCD we have ABABCD, ABCBCD and ABCDCD. - Emeric Deutsch, Apr 02 2004
Simplest example of a second-order recurrence with the sixth term a square.
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Lekraj Beedassy, Jun 11 2004
a(n) (for n > 0) is the smallest positive integer that cannot be created by summing at most n values chosen among the previous terms (with repeats allowed). - Andrew Weimholt, Jul 20 2004
All nonnegative integer solutions of Pell equation b(n)^2 - 5*a(n)^2 = +4 together with b(n) = A005248(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
a(n+1) is a Chebyshev transform of 3^n (A000244), where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
a(n) is the number of distinct products of matrices A, B, C, in (A+B+C)^n where commutator [A,B] = 0 but C does not commute with A or B. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Number of binary words with exactly k-1 strictly increasing runs. Example: a(3)=F(6)=8 because we have 0|0,1|0,1|1,0|01,01|0,1|01,01|1 and 01|01. Column sums of A119900. - Emeric Deutsch, Jul 23 2006
See Table 1 on page 411 of Lukovits and Janezic paper. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5) a(n) + sqrt(5 a(n)^2 + 4))/2) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
[1,3,8,21,55,144,...] is the Hankel transform of [1,1,4,17,75,339,1558,...](see A026378). - Philippe Deléham, Apr 13 2007
The Diophantine equation a(n) = m has a solution (for m >= 1) if and only if floor(arcsinh(sqrt(5)*m/2)/log(phi)) <> floor(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130259(m) = A130260(m). - Hieronymus Fischer, May 25 2007
a(n+1) = AB^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 1=`1`, 3=`10`, 8=`100`, 21=`1000`, ..., in Wythoff code.
Equals row sums of triangles A140069, A140736 and A140737. - Gary W. Adamson, May 25 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of width n (width(alpha) = max(Im(alpha))). Equivalently, it is the number of idempotent order-preserving full transformations (of an n-element chain). - Abdullahi Umar, Sep 08 2008
a(n) is the number of ways that a string of 0,1 and 2 of size (n-1) can be arranged with no 12-pairs. - Udita Katugampola, Sep 24 2008
Starting with offset 1 = row sums of triangle A175011. - Gary W. Adamson, Apr 03 2010
As a fraction: 1/71 = 0.01408450... or 1/9701 = 0.0001030821.... - Mark Dols, May 18 2010
Sum of the products of the elements in the compositions of n (example for n=3: the compositions are 1+1+1, 1+2, 2+1, and 3; a(3) = 1*1*1 + 1*2 + 2*1 + 3 = 8). - Dylon Hamilton, Jun 20 2010, Geoffrey Critzer, Joerg Arndt, Dec 06 2010
a(n) relates to regular polygons with even numbers of edges such that Product_{k=1..(n-2)/2} (1 + 4*cos^2 k*Pi/n) = even-indexed Fibonacci numbers with a(n) relating to the 2*n-gons. The constants as products = roots to even-indexed rows of triangle A152063. For example: a(5) = 55 satisfies the product formula relating to the 10-gon. - Gary W. Adamson, Aug 15 2010
Alternatively, product of roots to x^4 - 12x^3 + 51x^2 - 90x + 55, (10th row of triangle A152063) = (4.618...)*(3.618...)*(2.381...)*(1.381...) = 55. - Gary W. Adamson, Aug 15 2010
a(n) is the number of generalized compositions of n when there are i different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Starting with "1" = row sums of triangle A180339, and eigensequence of triangle A137710. - Gary W. Adamson, Aug 28 2010
a(2) = 3 is the only prime.
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n > 0, with exactly 2 elements of each rank level above 0. (Uniform used in the sense of Retakh, Serconek, and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 13 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 1. - Michel Lagneau, Feb 01 2014
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2}. - Milan Janjic, Jan 25 2015
With a(0) = 0, for n > 1, a(n) is the smallest number not already in the sequence such that a(n)^2 - a(n-1)^2 is a Fibonacci number. - Derek Orr, Jun 08 2015
Let T be the tree generated by these rules: 0 is in T, and if p is in T, then p + 1 is in T and x*p is in T and y*p is in T. The n-th generation of T consists of A001906(n) polynomials, for n >= 0. - Clark Kimberling, Nov 24 2015
For n > 0, a(n) = exactly the maximum area of a quadrilateral with sides in order of lengths F(n), F(n), L(n), and L(n) with L(n)=A000032(n). - J. M. Bergot, Jan 20 2016
a(n) = twice the area of a triangle with vertices at (L(n+1), L(n+2)), (F(n+1), F(n+1)), and (L(n+2), L(n+1)), with L(n)=A000032(n). - J. M. Bergot, Apr 20 2016
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S - S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a sequence of n triangles, where adjacent triangles share an edge. - Kevin Long, May 07 2018
a(n) is the number of ways to partition [n] such that each block is a run of consecutive numbers, and each block has a fixed point, e.g., for n=3, 12|3 with 1 and 3 as fixed points is valid, but 13|2 is not valid as 1 and 3 do not form a run. Consequently, a(n) also counts the spanning trees of the graph given by taking a path with n vertices and adding another vertex adjacent to all of them. - Kevin Long, May 11 2018
From Wolfdieter Lang, May 31 2018: (Start)
The preceding comment can be paraphrased as follows. a(n) is the row sum of the array A305309 for n >= 1. The array A305309(n, k) gives the sum of the products of the block lengths of the set partition of [n] := {1, 2, ..., n} with A048996(n, k) blocks of consecutive numbers, corresponding to the compositions obtained from the k-th partition of n in Abramowitz-Stegun order. See the comments and examples at A305309.
{a(n)} also gives the infinite sequence of nonnegative numbers k for which k * ||k*phi|| < 1/sqrt(5), where the irrational number phi = A001622 (golden section), and ||x|| is the absolute value of the difference between x and the nearest integer. See, e.g., the Havil reference, pp. 171-172. (End)
a(n) is the number of tilings of two n X 1 rectangles joined orthogonally at a common end-square (so to have 2n-1 squares in a right-angle V shape) with only 1 X 1 and 2 X 1 tiles. This is a consequence of F(2n) = F(n+1)*F(n) + F(n)*F(n-1). - Nathaniel Gregg, Oct 10 2021
These are the denominators of the upper convergents to the golden ratio, tau; they are also the numerators of the lower convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
For n > 1, a(n) is the smallest Fibonacci number of unit equilateral triangle tiles needed to make an isosceles trapezoid of height F(n) triangles. - Kiran Ananthpur Bacche, Sep 01 2024

Examples

			G.f. = x + 3*x^2 + 8*x^3 + 21*x^4 + 55*x^5 + 144*x^6 + 377*x^7 + 987*x^8 + ...
a(3) = 8 because there are exactly 8 idempotent order-preserving full transformations on a 3-element chain, namely: (1,2,3)->(1,1,1),(1,2,3)->(2,2,2),(1,2,3)->(3,3,3),(1,2,3)->(1,1,3),(1,2,3)->(2,2,3),(1,2,3)->(1,2,2),(1,2,3)->(1,3,3),(1,2,3)->(1,2,3)-mappings are coordinate-wise. - _Abdullahi Umar_, Sep 08 2008
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 2,5,6,14,33,55.
  • R. J. Douglas, Tournaments that admit exactly one Hamiltonian cycle, Proc. London Math. Soc., 21 (1970), 716-730.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • A. Gerardin, Reply to Query 4389, L'Intermédiaire des Mathématiciens, 22 (1915), 23.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 171-172.
  • Howie, J. M. Combinatorial and probabilistic results in transformation semigroups. Words, languages and combinatorics, II (Kyoto, 1992), 200--206, World Sci. Publ., River Edge, NJ, (1994).
  • Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), 51-62.
  • I. Lukovits, A. Graovac, E. Kalman, G. Kaptay, P. Nagy, S. Nikolic, J. Sytchev and N. Trinajstich, "Nanotubes: Number of Kekulé Structures and Aromaticity", J. Chem. Inf. Comput. Sci, vol. 43 (2003), pp. 609-614. See Equation 6 on page 611.
  • T. Mansour, M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
  • H. Mathieu, Query 3932, L'Intermédiaire des Mathématiciens, 18 (1911), 222. - N. J. A. Sloane, Mar 08 2022
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 101.
  • Paulo Ribenboim, Primes in Lucas sequences (Chap 4), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 27.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Fibonacci A000045 = union of this sequence and A001519.
Inverse sequences A130259 and A130260.

Programs

  • Haskell
    a001906 n = a001906_list !! n
    a001906_list =
       0 : 1 : zipWith (-) (map (* 3) $ tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Sep 10 2014
  • Maple
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 0), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+1), n=0..28); # Zerinvary Lajos, Apr 04 2009
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
    a := n -> `if`(n = 0, 0, H(2*n, 1, 1/2)):
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 03 2019
    A001906 := proc(n)
        combinat[fibonacci](2*n) ;
    end proc:
    seq(A001906(n),n=0..20) ; # R. J. Mathar, Jan 11 2024
  • Mathematica
    f[n_] := Fibonacci[2n]; Array[f, 28, 0] (* or *)
    LinearRecurrence[{3, -1}, {0, 1}, 28] (* Robert G. Wilson v, Jul 13 2011 *)
    Take[Fibonacci[Range[0,60]],{1,-1,2}] (* Harvey P. Dale, May 23 2012 *)
    Table[ ChebyshevU[n-1, 3/2], {n, 0, 30}] (* Jean-François Alcover, Jan 25 2013, after Michael Somos *)
    CoefficientList[Series[(x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2014 *)
  • Maxima
    makelist(fib(2*n),n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • MuPAD
    numlib::fibonacci(2*n) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(2*n)}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = subst( poltchebi(n+1)*4 - poltchebi(n)*6, x, 3/2)/5}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3/2)}; /* Michael Somos Jun 18 2011 */
    
  • PARI
    Vec(x/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012
    
  • Python
    def a(n, adict={0:0, 1:1}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1) - a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    
  • Sage
    [lucas_number1(n,3,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [fibonacci(2*n) for n in range(0, 28)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x / (1 - 3*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = 3*a(n-1) - a(n-2) = A000045(2*n).
a(n) = -a(-n).
a(n) = A060921(n-1, 0), n >= 1.
a(n) = sqrt((A005248(n)^2 - 4)/5).
a(n) = A007598(n) - A007598(n-2), n > 1.
a(n) = (ap^n - am^n)/(ap-am), with ap := (3+sqrt(5))/2, am := (3-sqrt(5))/2.
Invert transform of natural numbers: a(n) = Sum_{k=1..n} k*a(n-k), a(0) = 1. - Vladeta Jovovic, Apr 27 2001
a(n) = S(n-1, 3) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, see A049310.
a(n) = Sum_{k=0..n} binomial(n, k)*F(k). - Benoit Cloitre, Sep 03 2002
Limit_{n->infinity} a(n)/a(n-1) = 1 + phi = (3 + sqrt(5))/2. This sequence includes all of the elements of A033888 combined with A033890.
a(0)=0, a(1)=1, a(2)=3, a(n)*a(n-2) + 1 = a(n-1)^2. - Benoit Cloitre, Dec 06 2002
a(n) = n + Sum_{k=0..n-1} Sum_{i=0..k} a(i) = n + A054452(n). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=1..n} binomial(n+k-1, n-k). - Vladeta Jovovic, Mar 23 2003
E.g.f.: (2/sqrt(5))*exp(3*x/2)*sinh(sqrt(5)*x/2). - Paul Barry, Apr 11 2003
Second diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = F(n)*L(n) = A000045(n)*A000032(n). - Lekraj Beedassy, Nov 17 2003
F(2n+2) = 1, 3, 8, ... is the binomial transform of F(n+2). - Paul Barry, Apr 24 2004
Partial sums of A001519(n). - Lekraj Beedassy, Jun 11 2004
a(n) = Sum_{i=0..n-1} binomial(2*n-1-i, i)*5^(n-i-1)*(-1)^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n) = Sum_{k=0..n} binomial(n+k, n-k-1) = Sum_{k=0..n} binomial(n+k, 2k+1).
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*3^(n-2*k). - Paul Barry, Oct 25 2004
a(n) = (n*L(n) - F(n))/5 = Sum_{k=0..n-1} (-1)^n*L(2*n-2*k-1).
The i-th term of the sequence is the entry (1, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
Computation suggests that this sequence is the Hankel transform of A005807. The Hankel transform of {a(n)} is Det[{{a(1), ..., a(n)}, {a(2), ..., a(n+1)}, ..., {a(n), ..., a(2n-1)}}]. - John W. Layman, Jul 21 2000
a(n+1) = (A005248(n+1) - A001519(n))/2. - Creighton Dement, Aug 15 2004
a(n+1) = Sum_{i=0..n} Sum_{j=0..n} binomial(n-i, j)*binomial(n-j, i). - N. J. A. Sloane, Feb 20 2005
a(n) = (2/sqrt(5))*sinh(2*n*psi), where psi:=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = ((phi+1)^n - A001519(n))/phi with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
Row sums of triangle A135871. - Gary W. Adamson, Dec 02 2007
a(n)^2 = Sum_{k=1..n} a(2*k-1). This is a property of any sequence S(n) such that S(n) = B*S(n-1) - S(n-2) with S(0) = 0 and S(1) = 1 including {0,1,2,3,...} where B = 2. - Kenneth J Ramsey, Mar 23 2008
a(n) = 1/sqrt(5)*(phi^(2*n+2) - phi^(-2*n-2)), where phi = (1+sqrt(5))/2, the golden ratio. - Udita Katugampola (SIU), Sep 24 2008
If p[i] = i and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 02 2010
If p[i] = Stirling2(i,2) and if A is the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(n) = F(2*n+10) mod F(2*n+5).
a(n) = 1 + a(n-1) + Sum_{i=1..n-1} a(i), with a(0)=0. - Gary W. Adamson, Feb 19 2011
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 3's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
a(n), n > 1 is equal to the determinant of an (n-x) X (n-1) tridiagonal matrix with 3's in the main diagonal, 1's in the super and subdiagonals, and the rest 0's. - Gary W. Adamson, Jun 27 2011
a(n) = b such that Integral_{x=0..Pi/2} sin(n*x)/(3/2-cos(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n+1) = Sum_{k=0..n} A101950(n,k)*2^k. - Philippe Deléham, Feb 10 2012
G.f.: A(x) = x/(1-3*x+x^2) = G(0)/sqrt(5); where G(k)= 1 -(a^k)/(1 - b*x/(b*x - 2*(a^k)/G(k+1))), a = (7-3*sqrt(5))/2, b = 3+sqrt(5), if |x|<(3-sqrt(5))/2 = 0.3819660...; (continued fraction 3 kind, 3-step ). - Sergei N. Gladkovskii, Jun 25 2012
a(n) = 2^n*b(n;1/2) = -b(n;-1), where b(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also Witula's et al. papers). - Roman Witula, Jul 12 2012
Product_{n>=1} (1 + 1/a(n)) = 1 + sqrt(5). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (1/6)*(1 + sqrt(5)). - Peter Bala, Dec 23 2012
G.f.: x/(1-2*x) + x^2/(1-2*x)/(Q(0)-x) where Q(k) = 1 - x/(x*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: G(0)/2 - 1, where G(k) = 1 + 1/( 1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: x*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
Sum_{n>=1} 1/(a(n) + 1/a(n)) = 1. Compare with A001519, A049660 and A049670. - Peter Bala, Nov 29 2013
a(n) = U(n-1,3/2) where U(n-1,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 25 2015
The o.g.f. A(x) satisfies A(x) + A(-x) + 6*A(x)*A(-x) = 0. The o.g.f. for A004187 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
For n > 1, a(n) = (3*F(n+1)^2 + 2*F(n-2)*F(n+1) - F(n-2)^2)/4. - J. M. Bergot, Feb 16 2016
For n > 3, a(n) = floor(MA) - 4 for n even and floor(MA) + 5 for n odd. MA is the maximum area of a quadrilateral with lengths of sides in order L(n), L(n), F(n-3), F(n+3), with L(n)=A000032(n). The ratio of the longer diagonal to the shorter approaches 5/3. - J. M. Bergot, Feb 16 2016
a(n+1) = Sum_{j=0..n} Sum_{k=0..j} binomial(n-j,k)*binomial(j,k)*2^(j-k). - Tony Foster III, Sep 18 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{k=1..A000041(n)} A305309(n, k), n >= 1. Also row sums of triangle A078812.- Wolfdieter Lang, May 31 2018
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
Sum_{n>=1} 1/a(n) = A153386. - Amiram Eldar, Oct 04 2020
a(n) = A249450(n) + 2. - Leo Tavares, Oct 10 2021
a(n) = -2/(sqrt(5)*tan(2*arctan(phi^(2*n)))), where phi = A001622 is the golden ratio. - Diego Rattaggi, Nov 21 2021
a(n) = sinh(2*n*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From Amiram Eldar, Dec 02 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1 + 1/sqrt(5) (A344212).
Product_{n>=2} (1 + (-1)^n/a(n)) = (5/6) * (1 + 1/sqrt(5)). (End)
a(n) = Sum_{k>=0} Fibonacci(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025
Sum_{n>=0} a(n)/3^n = 3. - Diego Rattaggi, Jan 20 2025

A000071 a(n) = Fibonacci(n) - 1.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, 4180, 6764, 10945, 17710, 28656, 46367, 75024, 121392, 196417, 317810, 514228, 832039, 1346268, 2178308, 3524577, 5702886, 9227464, 14930351, 24157816, 39088168, 63245985, 102334154
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of allowable transition rules for passing from one change to the next (on n-1 bells) in the English art of bell-ringing. This is also the number of involutions in the symmetric group S_{n-1} which can be represented as a product of transpositions of consecutive numbers from {1, 2, ..., n-1}. Thus for n = 6 we have a(6) from (12), (12)(34), (12)(45), (23), (23)(45), (34), (45), for instance. See my 1983 Math. Proc. Camb. Phil. Soc. paper. - Arthur T. White, letter to N. J. A. Sloane, Dec 18 1986
Number of permutations p of {1, 2, ..., n-1} such that max|p(i) - i| = 1. Example: a(4) = 2 since only the permutations 132 and 213 of {1, 2, 3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003 [For a(5) = 4 we have 2143, 1324, 2134 and 1243. - Jon Perry, Sep 14 2013]
Number of 001-avoiding binary words of length n-3. a(n) is the number of partitions of {1, ..., n-1} into two blocks in which only 1- or 2-strings of consecutive integers can appear in a block and there is at least one 2-string. E.g., a(6) = 7 because the enumerated partitions of {1, 2, 3, 4, 5} are 124/35, 134/25, 14/235, 13/245, 1245/3, 145/23, 125/34. - Augustine O. Munagi, Apr 11 2005
Numbers for which only one Fibonacci bit-representation is possible and for which the maximal and minimal Fibonacci bit-representations (A104326 and A014417) are equal. For example, a(12) = 10101 because 8 + 3 + 1 = 12. - Casey Mongoven, Mar 19 2006
Beginning with a(2), the "Recamán transform" (see A005132) of the Fibonacci numbers (A000045). - Nick Hobson, Mar 01 2007
Starting with nonzero terms, a(n) gives the row sums of triangle A158950. - Gary W. Adamson, Mar 31 2009
a(n+2) is the minimum number of elements in an AVL tree of height n. - Lennert Buytenhek (buytenh(AT)wantstofly.org), May 31 2010
a(n) is the number of branch nodes in the Fibonacci tree of order n-1. A Fibonacci tree of order n (n >= 2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node (see the Knuth reference, p. 417). - Emeric Deutsch, Jun 14 2010
a(n+3) is the number of distinct three-strand positive braids of length n (cf. Burckel). - Maxime Bourrigan, Apr 04 2011
a(n+1) is the number of compositions of n with maximal part 2. - Joerg Arndt, May 21 2013
a(n+2) is the number of leafs of great-grandparent DAG (directed acyclic graph) of height n. A great-grandparent DAG of height n is a single node for n = 1; for n > 1 each leaf of ggpDAG(n-1) has two child nodes where pairs of adjacent new nodes are merged into single node if and only if they have disjoint grandparents and same great-grandparent. Consequence: a(n) = 2*a(n-1) - a(n-3). - Hermann Stamm-Wilbrandt, Jul 06 2014
2 and 7 are the only prime numbers in this sequence. - Emmanuel Vantieghem, Oct 01 2014
From Russell Jay Hendel, Mar 15 2015: (Start)
We can establish Gerald McGarvey's conjecture mentioned in the Formula section, however we require n > 4. We need the following 4 prerequisites.
(1) a(n) = F(n) - 1, with {F(n)}A000045.%20(2)%20(Binet%20form)%20F(n)%20=%20(d%5En%20-%20e%5En)/sqrt(5)%20with%20d%20=%20phi%20and%20e%20=%201%20-%20phi,%20de%20=%20-1%20and%20d%20+%20e%20=%201.%20It%20follows%20that%20a(n)%20=%20(d(n)%20-%20e(n))/sqrt(5)%20-%201.%20(3)%20To%20prove%20floor(x)%20=%20y%20is%20equivalent%20to%20proving%20that%20x%20-%20y%20lies%20in%20the%20half-open%20interval%20%5B0,%201).%20(4)%20The%20series%20%7Bs(n)%20=%20c1%20x%5En%20+%20c2%7D">{n >= 1} the Fibonacci numbers A000045. (2) (Binet form) F(n) = (d^n - e^n)/sqrt(5) with d = phi and e = 1 - phi, de = -1 and d + e = 1. It follows that a(n) = (d(n) - e(n))/sqrt(5) - 1. (3) To prove floor(x) = y is equivalent to proving that x - y lies in the half-open interval [0, 1). (4) The series {s(n) = c1 x^n + c2}{n >= 1}, with -1 < x < 0, and c1 and c2 positive constants, converges by oscillation with s(1) < s(3) < s(5) < ... < s(6) < s(4) < s(2). If follows that for any odd n, the open interval (s(n), s(n+1)) contains the subsequence {s(t)}_{t >= n + 2}. Using these prerequisites we can analyze the conjecture.
Using prerequisites (2) and (3) we see we must prove, for all n > 4, that d((d^(n-1) - e^(n-1))/sqrt(5) - 1) - (d^n - e^n)/sqrt(5) + 1 + c lies in the interval [0, 1). But de = -1, implying de^(n-1) = -e^(n-2). It follows that we must equivalently prove (for all n > 4) that E(n, c) = (e^(n-2) + e^n)/sqrt(5) + 1 - d + c = e^(n-2) (e^2 + 1)/sqrt(5) + e + c lies in [0, 1). Clearly, for any particular n, E(n, c) has extrema (maxima, minima) when c = 2*(1-d) and c = (1+d)*(1-d). Therefore, the proof is completed by using prerequisite (4). It suffices to verify E(5, 2*(1-d)) = 0, E(6, 2*(1-d)) = 0.236068, E(5, (1-d)*(1+d)) = 0.618034, E(6, (1-d)*(1+d)) = 0.854102, all lie in [0, 1).
(End)
a(n) can be shown to be the number of distinct nonempty matchings on a path with n vertices. (A matching is a collection of disjoint edges.) - Andrew Penland, Feb 14 2017
Also, for n > 3, the lexicographically earliest sequence of positive integers such that {phi*a(n)} is located strictly between {phi*a(n-1)} and {phi*a(n-2)}. - Ivan Neretin, Mar 23 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) <= e(k). [Martinez and Savage, 2.5]
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) <= e(k) and e(i) != e(k). [Martinez and Savage, 2.5]
(End)
Numbers whose Zeckendorf (A014417) and dual Zeckendorf (A104326) representations are the same: alternating digits of 1 and 0. - Amiram Eldar, Nov 01 2019
a(n+2) is the length of the longest array whose local maximum element can be found in at most n reveals. See link to the puzzle by Alexander S. Kulikov. - Dmitry Kamenetsky, Aug 08 2020
a(n+2) is the number of nonempty subsets of {1,2,...,n} that contain no consecutive elements. For example, the a(6)=7 subsets of {1,2,3,4} are {1}, {2}, {3}, {4}, {1,3}, {1,4} and {2,4}. - Muge Olucoglu, Mar 21 2021
a(n+3) is the number of allowed patterns of length n in the even shift (that is, a(n+3) is the number of binary words of length n in which there are an even number of 0s between any two occurrences of 1). For example, a(7)=12 and the 12 allowed patterns of length 4 in the even shift are 0000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1100, 1110, 1111. - Zoran Sunic, Apr 06 2022
Conjecture: for k a positive odd integer, the sequence {a(k^n): n >= 1} is a strong divisibility sequence; that is, for n, m >= 1, gcd(a(k^n), a(k^m)) = a(k^gcd(n,m)). - Peter Bala, Dec 05 2022
In general, the sum of a second-order linear recurrence having signature (c,d) will be a third-order recurrence having a signature (c+1,d-c,-d). - Gary Detlefs, Jan 05 2023
a(n) is the number of binary strings of length n-2 whose longest run of 1's is of length 1, for n >= 3. - Félix Balado, Apr 03 2025

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 1.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 28.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 64.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.

Crossrefs

Antidiagonal sums of array A004070.
Right-hand column 2 of triangle A011794.
Related to sum of Fibonacci(kn) over n. Cf. A099919, A058038, A138134, A053606.
Subsequence of A226538. Also a subsequence of A061489.

Programs

  • Haskell
    a000071 n = a000071_list !! n
    a000071_list = map (subtract 1) $ tail a000045_list
    -- Reinhard Zumkeller, May 23 2013
    
  • Magma
    [Fibonacci(n)-1: n in [1..60]]; // Vincenzo Librandi, Apr 04 2011
    
  • Maple
    A000071 := proc(n) combinat[fibonacci](n)-1 ; end proc; # R. J. Mathar, Apr 07 2011
    a:= n-> (Matrix([[1, 1, 0], [1, 0, 0], [1, 0, 1]])^(n-1))[3, 2]; seq(a(n), n=1..50); # Alois P. Heinz, Jul 24 2008
  • Mathematica
    Fibonacci[Range[40]] - 1 (* or *) LinearRecurrence[{2, 0, -1}, {0, 0, 1}, 40] (* Harvey P. Dale, Aug 23 2013 *)
    Join[{0}, Accumulate[Fibonacci[Range[0, 39]]]] (* Alonso del Arte, Oct 22 2017, based on Giorgi Dalakishvili's formula *)
  • PARI
    {a(n) = if( n<1, 0, fibonacci(n)-1)};
    
  • SageMath
    [fibonacci(n)-1 for n in range(1,60)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = A000045(n) - 1.
a(0) = -1, a(1) = 0; thereafter a(n) = a(n-1) + a(n-2) + 1.
a(n) = A101220(1, 1, n-2), for n > 1.
G.f.: x^3/((1-x-x^2)*(1-x)). - Simon Plouffe in his 1992 dissertation, dropping initial 0's
a(n) = 2*a(n-1) - a(n-3). - R. H. Hardin, Apr 02 2011
Partial sums of Fibonacci numbers. - Wolfdieter Lang
a(n) = -1 + (A*B^n + C*D^n)/10, with A, C = 5 +- 3*sqrt(5), B, D = (1 +- sqrt(5))/2. - Ralf Stephan, Mar 02 2003
a(1) = 0, a(2) = 0, a(3) = 1, then a(n) = ceiling(phi*a(n-1)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, May 06 2003
Conjecture: for all c such that 2*(2 - Phi) <= c < (2 + Phi)*(2 - Phi) we have a(n) = floor(Phi*a(n-1) + c) for n > 4. - Gerald McGarvey, Jul 22 2004. This is true provided n > 3 is changed to n > 4, see proof in Comments section. - Russell Jay Hendel, Mar 15 2015
a(n) = Sum_{k = 0..floor((n-2)/2)} binomial(n-k-2, k+1). - Paul Barry, Sep 23 2004
a(n+3) = Sum_{k = 0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*2^(n-3*k). - Paul Barry, Oct 20 2004
a(n+1) = Sum(binomial(n-r, r)), r = 1, 2, ... which is the case t = 2 and k = 2 in the general case of t-strings and k blocks: a(n+1, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r = 1, 2, ... - Augustine O. Munagi, Apr 11 2005
a(n) = Sum_{k = 0..n-2} k*Fibonacci(n - k - 3). - Ross La Haye, May 31 2006
a(n) = term (3, 2) in the 3 X 3 matrix [1, 1, 0; 1, 0, 0; 1, 0, 1]^(n-1). - Alois P. Heinz, Jul 24 2008
For n >= 4, a(n) = ceiling(phi*a(n-1)), where phi is the golden ratio. - Vladimir Shevelev, Jul 04 2010
Closed-form without two leading zeros g.f.: 1/(1 - 2*x - x^3); ((5 + 2*sqrt(5))*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5))*((1 - sqrt(5))/2)^n - 5)/5; closed-form with two leading 0's g.f.: x^2/(1 - 2*x - x^3); ((5 + sqrt(5))*((1 + sqrt(5))/2)^n + (5 - sqrt(5))*((1 - sqrt(5))/2)^n - 10)/10. - Tim Monahan, Jul 10 2011
A000119(a(n)) = 1. - Reinhard Zumkeller, Dec 28 2012
a(n) = A228074(n - 1, 2) for n > 2. - Reinhard Zumkeller, Aug 15 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 - x^2)/( x*(4*k + 4 - x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
A083368(a(n+3)) = n. - Reinhard Zumkeller, Aug 10 2014
E.g.f.: 1 - exp(x) + 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Jun 15 2016
a(n) = A000032(3+n) - 1 mod A000045(3+n). - Mario C. Enriquez, Apr 01 2017
a(n) = Sum_{i=0..n-2} Fibonacci(i). - Giorgi Dalakishvili (mcnamara_gio(AT)yahoo.com), Apr 02 2005 [corrected by Doug Bell, Jun 01 2017]
a(n+2) = Sum_{j = 0..floor(n/2)} Sum_{k = 0..j} binomial(n - 2*j, k+1)*binomial(j, k). - Tony Foster III, Sep 08 2017
From Peter Bala, Nov 12 2021: (Start)
a(4*n) = Fibonacci(2*n+1)*Lucas(2*n-1) = A081006(n);
a(4*n+1) = Fibonacci(2*n)*Lucas(2*n+1) = A081007(n);
a(4*n+2) = Fibonacci(2*n)*Lucas(2*n+2) = A081008(n);
a(4*n+3) = Fibonacci(2*n+2)*Lucas(2*n+1) = A081009(n). (End)
G.f.: x^3/((1 - x - x^2)*(1 - x)) = Sum_{n >= 0} (-1)^n * x^(n+3) *( Product_{k = 1..n} (k - x)/Product_{k = 1..n+2} (1 - k*x) ) (a telescoping series). - Peter Bala, May 08 2024
Product_{n>=4} (1 + (-1)^n/a(n)) = 3*phi/4, where phi is the golden ratio (A001622). - Amiram Eldar, Nov 28 2024

Extensions

Edited by N. J. A. Sloane, Apr 04 2011

A027941 a(n) = Fibonacci(2*n + 1) - 1.

Original entry on oeis.org

0, 1, 4, 12, 33, 88, 232, 609, 1596, 4180, 10945, 28656, 75024, 196417, 514228, 1346268, 3524577, 9227464, 24157816, 63245985, 165580140, 433494436, 1134903169, 2971215072, 7778742048, 20365011073, 53316291172, 139583862444, 365435296161, 956722026040
Offset: 0

Views

Author

Keywords

Comments

Also T(2n+1,n+1), T given by A027935. Also first row of Inverse Stolarsky array.
Third diagonal of array defined by T(i, 1)=T(1, j)=1, T(i, j)=Max(T(i-1, j)+T(i-1, j-1); T(i-1, j-1)+T(i, j-1)). - Benoit Cloitre, Aug 05 2003
Number of Schroeder paths of length 2(n+1) having exactly one up step starting at an even height (a Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1) (up steps), D=(1,-1) (down steps) and H=(2,0) (level steps) and never going below the x-axis). Schroeder paths are counted by the large Schroeder numbers (A006318). Example: a(1)=4 because among the six Schroeder paths of length 4 only the paths (U)HD, (U)UDD, H(U)D, (U)DH have exactly one U step that starts at an even height (shown between parentheses). - Emeric Deutsch, Dec 19 2004
Also: smallest number not writeable as the sum of fewer than n positive Fibonacci numbers. E.g., a(5)=88 because it is the smallest number that needs at least 5 Fibonacci numbers: 88 = 55 + 21 + 8 + 3 + 1. - Johan Claes, Apr 19 2005 [corrected for offset and clarification by Mike Speciner, Sep 19 2023] In general, a(n) is the sum of n positive Fibonacci numbers as a(n) = Sum_{i=1..n} A000045(2*i). See A001076 when negative Fibonacci numbers can be included in the sum. - Mike Speciner, Sep 24 2023
Except for first term, numbers a(n) that set a new record in the number of Fibonacci numbers needed to sum up to n. Position of records in sequence A007895. - Ralf Stephan, May 15 2005
Successive extremal petal bends beta(n) = a(n-2). See the Ring Lemma of Rodin and Sullivan in K. Stephenson, Introduction to Circle Packing (Cambridge U. P., 2005), pp. 73-74 and 318-321. - David W. Cantrell (DWCantrell(AT)sigmaxi.net)
a(n+1)= AAB^(n)(1), n>=1, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 4=`110`, 12=`1100`, 33=`11000`, 88=`110000`, ..., in Wythoff code. AA(1)=1=a(1) but for uniqueness reason 1=A(1) in Wythoff code. - N. J. A. Sloane, Jun 29 2008
Start with n. Each n generates a sublist {n-1,n-1,n-2,..,1}. Each element of each sublist also generates a sublist. Add numbers in all terms. For example, 3->{2,2,1} and both 2->{1,1}, so a(3) = 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 = 12. - Jon Perry, Sep 01 2012
For n>0: smallest number such that the inner product of Zeckendorf binary representation and its reverse equals n: A216176(a(n)) = n, see also A189920. - Reinhard Zumkeller, Mar 10 2013
Also, numbers m such that 5*m*(m+2)+1 is a square. - Bruno Berselli, May 19 2014
Also, number of nonempty submultisets of multisets of weight n that span an initial interval of integers (see 2nd example). - Gus Wiseman, Feb 10 2015
From Robert K. Moniot, Oct 04 2020: (Start)
Including a(-1):=0, consecutive terms (a(n-1),a(n))=(u,v) or (v,u) give all points on the hyperbola u^2-u+v^2-v-4*u*v=0 with both coordinates nonnegative integers. Note that this follows from identifying (1,u+1,v+1) with the Markov triple (1,Fibonacci(2n-1),Fibonacci(2n+1)). See A001519 (comments by Robert G. Wilson, Oct 05 2005, and Wolfdieter Lang, Jan 30 2015).
Let T(n) denote the n-th triangular number. If i, j are any two successive elements of the above sequence then (T(i-1) + T(j-1))/T(i+j-1) = 3/5. (End)

Examples

			a(5) = 88 = 2*33 + 12 + 4 + 1 + 5. a(6) = 232 = 2*88 + 33 + 12 + 4 + 1 + 6. - _Jon Perry_, Sep 01 2012
a(4) = 33 counts all nonempty submultisets of the last row: [1][2][3][4], [11][12][13][14][22][23][24][33][34], [111][112][113][122][123][124][133][134][222][223][233][234], [1111][1112][1122][1123][1222][1223][1233][1234]. - _Gus Wiseman_, Feb 10 2015
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 12.

Crossrefs

Related to partial sums of Fibonacci(k*n) over n: A000071, A099919, A058038, A138134, A053606; this sequence is the case k=2.
Cf. A212336 for more sequences with g.f. of the type 1/(1 - k*x + k*x^2 - x^3).
Cf. A000225 (sublist connection).
Cf. A258993 (row sums, n > 0), A000967.

Programs

Formula

a(n) = Sum_{i=1..n} binomial(n+i, n-i). - Benoit Cloitre, Oct 15 2002
G.f.: Sum_{k>=1} x^k/(1-x)^(2*k+1). - Benoit Cloitre, Apr 21 2003
a(n) = Sum_{k=1..n} F(2*k), i.e., partial sums of A001906. - Benoit Cloitre, Oct 27 2003
a(n) = Sum_{k=0..n-1} U(k, 3/2) = Sum_{k=0..n-1} S(k, 3), with S(k, 3) = A001906(k+1). - Paul Barry, Nov 14 2003
G.f.: x/((1-x)*(1-3*x+x^2)) = x/(1-4*x+4*x^2-x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) with n>=2, a(-1)=0, a(0)=0, a(1)=1.
a(n) = 3*a(n-1) - a(n-2) + 1 with n>=1, a(-1)=0, a(0)=0.
a(n) = Sum_{k=1..n} F(k)*L(k), where L(k) = Lucas(k) = A000032(k) = F(k-1) + F(k+1). - Alexander Adamchuk, May 18 2007
a(n) = 2*a(n-1) + (Sum_{k=1..n-2} a(k)) + n. - Jon Perry, Sep 01 2012
Sum {n >= 1} 1/a(n) = 3 - phi, where phi = 1/2*(1 + sqrt(5)) is the golden ratio. The ratio of adjacent terms r(n) := a(n)/a(n-1) satisfies the recurrence r(n+1) = (4*r(n) - 1)/(r(n) + 1) for n >= 2. - Peter Bala, Dec 05 2013
a(n) = S(n, 3) - S(n-1, 3) - 1, n >= 0, with Chebyshev's S-polynomials (see A049310), where S(-1, x) = 0. - Wolfdieter Lang, Aug 28 2014
a(n) = -1 + (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - Colin Barker, Jun 03 2016
E.g.f.: (sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(3*x/2)/5 - exp(x). - Ilya Gutkovskiy, Jun 03 2016
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*Fibonacci(k). - Vladimir Kruchinin, Oct 14 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i+1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n)*a(n-2) = a(n-1)*(a(n-1) - 1) for n>1. - Robert K. Moniot, Aug 23 2020
a(n) = Sum_{k=1..n} C(2*n-k,k). - Wesley Ivan Hurt, Dec 22 2020
a(n) = Sum_{k = 1..2*n+2} (-1)^k*Fibonacci(k). - Peter Bala, Nov 14 2021
a(n) = (2*cosh((1 + 2*n)*arccsch(2)))/sqrt(5) - 1. - Peter Luschny, Nov 21 2021
a(n) = F(n + (n mod 2)) * L(n+1 - (n mod 2)), where L(n) = A000032(n) and F(n) = A000045(n) (Euler and Sadek, 2001). - Amiram Eldar, Jan 13 2022

Extensions

More terms from James Sellers, Sep 08 2000
Paul Barry's Nov 14 2003 formula, recurrences and g.f. corrected for offset 0 and index link for Chebyshev polynomials added by Wolfdieter Lang, Aug 28 2014

A092521 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3), with a(1) = 1, a(2) = 8, a(3) = 56.

Original entry on oeis.org

1, 8, 56, 385, 2640, 18096, 124033, 850136, 5826920, 39938305, 273741216, 1876250208, 12860010241, 88143821480, 604146740120, 4140883359361, 28382036775408, 194533374068496, 1333351581704065, 9138927697859960
Offset: 1

Views

Author

K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, Apr 06 2004

Keywords

Comments

a(n) such that 9*(T(a(n)-1) + T(a(n+1)-1)) = 7*(T(a(n) + a(n+1) - 1)), where T(i) denotes the i-th triangular number.
Partial sums of Chebyshev sequence S(n,7) = U(n,7/2) = A004187(n+1). - Wolfdieter Lang, Aug 31 2004
From Klaus Purath, Aug 06 2025: (Start)
Numbers k such that both 3*k + 1 and 15*k + 1 are perfect squares. Also the sum of two consecutive terms is a square.
Take any recurrence (r) of the form (3,-1) with initial value 0 followed by an arbitrary positive integer i. Then the product of two consecutive terms of r divided by 3*i^2 gives the current sequence. (End)

Examples

			G.f. = x + 8*x^2 + 56*x^3 + 385*x^4 + 2640*x^5 + 18096*x^6 + ... - _Michael Somos_, Jan 23 2025
		

Crossrefs

Cf. A212336 for more sequences with g.f. of the type 1/(1 - k*x + k*x^2 - x^3).

Programs

  • Magma
    A092521:= func< n | (Lucas(4*n+2) -3)/15 >; // G. C. Greubel, Jun 12 2025
    
  • Mathematica
    a[1] = 1; a[2] = 8; a[3] = 56; a[n_] := a[n] = 8 a[n - 1] - 8 a[n - 2] + a[n - 3]; Table[ a[n], {n, 20}] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[(LucasL[4n+2]-3)/15, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
    LinearRecurrence[{8,-8,1},{1,8,56},30] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    Vec(x/((1-x)*(1-7*x+x^2)) + O(x^100)) \\ Altug Alkan, Oct 29 2015
    
  • SageMath
    def A092521(n): return (lucas_number2(4*n+2,1,-1) -3)//15 # G. C. Greubel, Jun 12 2025

Formula

G.f.: x/(1 - 8*x + 8*x^2 - x^3) = x/((1 - x)*(1 - 7*x + x^2)).
a(n) = 7*a(n-1) - a(n-2) + 1, n>=2, a(0):=0, a(1)=1.
a(n) = (S(n, 7)-S(n-1, 7) -1)/5, n>=1, with S(n, 7) = U(n, 7/2) = A004187(n+1).
a(n) = A058038(n)/3.
a(n) = (1/3)*Sum_{k=0..n} Fibonacci(4*k). - Gary Detlefs, Dec 07 2010
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jan 23 2025
From G. C. Greubel, Jun 12 2025: (Start)
a(n) = A081079(n)/15.
E.g.f.: (1/15)*( exp(7*x/2)*( 3*cosh(p*x) + sqrt(5)*sinh(p*x) ) - 3*exp(x) ), where p = 3*sqrt(5)/2. (End)

Extensions

Edited and extended by Robert G. Wilson v, Apr 08 2004

A053606 a(n) = (Fibonacci(6*n+3) - 2)/4.

Original entry on oeis.org

0, 8, 152, 2736, 49104, 881144, 15811496, 283725792, 5091252768, 91358824040, 1639367579960, 29417257615248, 527871269494512, 9472265593285976, 169972909409653064, 3050040103780469184, 54730748958638792256, 982103441151717791432
Offset: 0

Views

Author

Keywords

Comments

Define a(1)=0, a(2)=8 with 5*(a(1)^2) + 5*a(1) + 1 = j(1)^2 = 1^2 and 5*(a(2)^2) + 5*a(2) + 1 = j(2)^2 = 19^2. Then a(n) = a(n-2) + 8*sqrt(5*(a(n-1)^2) + 5*a(n-1)+1). Another definition: a(n) such that 5*(a(n)^2) + 5*a(n) + 1 = j(n)^2. - Pierre CAMI, Mar 30 2005
It appears this sequence gives all nonnegative m such that 5*m^2 + 5*m + 1 is a square. - Gerald McGarvey, Apr 03 2005
sqrt(5*a(n)^2+5*a(n)+1) = A049629(n). - Gerald McGarvey, Apr 19 2005
a(n) is such that 5*a(n)^2 + 5*a(n) + 1 = j^2 = the square of A049629(n). Also A049629(n)/a(n) tends to sqrt(5) as n increases. - Pierre CAMI, Apr 21 2005
From Russell Jay Hendel, Apr 25 2015: (Start)
We prove the two McGarvey-CAMI conjectures mentioned at the beginning of the Comments section. Let, as usual, F(n) = A000045(n), the Fibonacci numbers. In the sequel we indicate equations with upper case letters ((A), (B), (C), (D)) for ease of reference.
Then we must prove (A), 5*((F(6*n+3)-2)/4)^2 + 5*((F(6*n+3)-2)/4) + 1 = ((F(6*n+5)-F(6*n+1))/4)^2. Let m = 3*n+1 so that 6*n+1, 6*n+3, and 6*n+5 are 2*m-1, 2*m+1, and 2*m+3 respectively. Define G(m) = F(6*n+3) = F(2*m+1) = A001519(m+1), the bisected Fibonacci numbers. We can now simplify equation (A) by i) multiplying the LHS and RHS by 16, ii) expanding squares, and iii) gathering like terms. This shows proof of (A) equivalent to proving (B), 5*G(m)^2-4 = (G(m+1)-G(m-1))^2.
By Jarden's theorem (D. Jarden, Recurring sequences, 2nd ed. Jerusalem, Riveon Lematematika, (1966)), if {H(n)}{n >=1} is any recursive sequence satisfying (C), H(n)=3H(n-1)-H(n-2), then {H(n)}^2{n >=1} is also a recursive sequence satisfying (D), H(n)^2=8H(n-1)^2-8H(n-2)^2+H(n-3)^2. As noted in the Formula section of A001519, {G(m)}_{m >= 1} satisfies (C).
Proof of (B) is now straightforward. Since {G(m)}{m >=1} satisfies (C), it follows that {G(m)^2}{m >=1} satisfies (D), and therefore, {5G(m)^2-4}_{m >=1} also satisfies (D).
Similarly, since {G(m)}{m >=1} satisfies (C), it follows that both {G(m+1)}{m >=1}, {G(m-1)}{m >=1} and their difference {G(m+1)-G(m-1)}{m >=1} satisfy (C), and therefore {G(m+1)-G(m-1)}^2_{m >=1} satisfies (D).
But then the LHS and RHS of (B) are equal for m=1,2,3 and satisfy the same recursion, (D). Hence the LHS and RHS of (B) are equal for all m. This completes the proof. (End)

Crossrefs

Cf. A049629.
Related to sum of Fibonacci(kn) over n.. A000071, A027941, A099919, A058038, A138134.

Programs

Formula

a(n) = 8*A049664(n).
a(n+1) = 9*a(n) + 2*sqrt(5*(2*a(n)+1)^2-1) + 4. - Richard Choulet, Aug 30 2007
G.f.: 8*x/((1-x)*(1-18*x+x^2)). - Richard Choulet, Oct 09 2007
a(n) = 18*a(n-1) - a(n-2) + 8, n > 1. - Gary Detlefs, Dec 07 2010
a(n) = Sum_{k=0..n} A134492(k). - Gary Detlefs, Dec 07 2010
a(n) = (Fibonacci(6*n+6) - Fibonacci(6*n) - 8)/16. - Gary Detlefs, Dec 08 2010

A099919 a(n) = F(3) + F(6) + F(9) + ... + F(3n), F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

0, 2, 10, 44, 188, 798, 3382, 14328, 60696, 257114, 1089154, 4613732, 19544084, 82790070, 350704366, 1485607536, 6293134512, 26658145586, 112925716858, 478361013020, 2026369768940, 8583840088782, 36361730124070, 154030760585064, 652484772464328, 2763969850442378
Offset: 0

Views

Author

Ralf Stephan, Oct 30 2004

Keywords

Comments

Partial sum of the even Fibonacci numbers. - Vladimir Joseph Stephan Orlovsky, Nov 28 2010

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 25.

Crossrefs

Partial sums of A014445.
Cf. A087635.
Case k = 3 of partial sums of fibonacci(k*n): A000071, A027941, A058038, A138134, A053606.

Programs

  • Magma
    [(Fibonacci(3*n+2) - 1)/2: n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    CoefficientList[Series[2 x/((1 - x) (1 - 4 x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
    LinearRecurrence[{5, -3, -1}, {0, 2, 10}, 30] (* G. C. Greubel, Jan 17 2018 *)
    Accumulate[Fibonacci[3Range[0, 19]]] (* Alonso del Arte, Dec 23 2018 *)
  • PARI
    a(n) = sum(i=1, n, fibonacci(3*i)); \\ Michel Marcus, Mar 15 2014
    
  • PARI
    a(n) = fibonacci(3*n+2)\2 \\ Charles R Greathouse IV, Jun 11 2015
    

Formula

a(n) = (Fibonacci(3*n + 2) - 1)/2 = (A015448(n+1)-1)/2.
G.f.: 2*x/((1 - x)*(1 - 4*x - x^2)).
a(n) = (F(3n + 2) - 1)/2 = 2 * A049652(n).
a(n) = Sum_{0 <= j <= i <= n} binomial(i, j)*F(i + j). - Benoit Cloitre, May 21 2005
From Gary Detlefs, Dec 08 2010: (Start)
a(n) = 4*a(n - 1) + a(n - 2) + 2, n > 1.
a(n) = 5*a(n - 1) - 3*a(n - 2) - a(n - 3), n > 2.
a(n) = (Fibonacci(3*n + 3) + Fibonacci(3*n) - 2)/4. (End)
a(n) = (-10 + (5 - 3*sqrt(5))*(2 - sqrt(5))^n + (2 + sqrt(5))^n*(5 + 3*sqrt(5)))/20. - Colin Barker, Nov 26 2016
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + 3*sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, Jun 03 2024

Extensions

a(0) = 0 prepended by Joerg Arndt, Mar 13 2014

A064170 a(1) = 1; a(n+1) = product of numerator and denominator in Sum_{k=1..n} 1/a(k).

Original entry on oeis.org

1, 1, 2, 10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290
Offset: 1

Views

Author

Leroy Quet, Sep 19 2001

Keywords

Comments

The numerator and denominator in the definition have no common divisors >1.
Also denominators in a system of Egyptian fraction for ratios of consecutive Fibonacci numbers: 1/2 = 1/2, 3/5 = 1/2 + 1/10, 8/13 = 1/2 + 1/10 + 1/65, 21/34 = 1/2 + 1/10 + 1/65 + 1/442 etc. (Rossi and Tout). - Barry Cipra, Jun 06 2002
a(n)-1 is a square. - Sture Sjöstedt, Nov 04 2011
From Wolfdieter Lang, May 26 2020: (Start)
Partial sums of the reciprocals: Sum_{k=1..n} 1/a(k) equal 1 for n=1, and F(2*n - 1)/F(2*n - 3) for n >= 2, with F = A000045. Proof by induction. Hence a(n) = 1 for n=1, and F(2*n - 3)*F(2*n - 5) for n >= 2, with F(-1) = 1 (gcd(F(n), F(n+1)) = 1). See the comment by Barry Cipra.
Thus a(n) = 1, for n = 1, and a(n) = 1 + F(2*(n-2))^2, for n >= 2 (by Cassini-Simson for even index, e.g., Vajda, p. 178 eq.(28)). See the Sture Sjöstedt comment.
The known G.f. of {F(2*n)^2} from A049684 leds then to the conjectured formula by R. J. Mathar below, and this proves also the recurrence given there..
From the partial sums the series Sum_{k>=1} 1/a(k) converges to 1 + phi, with phi = A001622. See the formulas by Gary W. Adamson and Diego Rattaggi below. (End)

Examples

			1/a(1) + 1/a(2) + 1/a(3) + 1/a(4) = 1 + 1 + 1/2 + 1/10 = 13/5. So a(5) = 13 * 5 = 65.
		

References

  • S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A033890 (first differences). - R. J. Mathar, Jul 03 2009

Programs

Formula

a(n) = Fibonacci(2*n-5)*Fibonacci(2*n-3), for n >= 3. - Barry Cipra, Jun 06 2002
Sum_{n>=3} 1/a(n) = 2/(1+sqrt(5)) = phi - 1, with phi = A001622. - Gary W. Adamson, Jun 07 2003
Conjecture: a(n) = 8*a(n-1)-8*a(n-2)+a(n-3), n>4. G.f.: -x*(2*x^2+x^3-7*x+1)/((x-1)*(x^2-7*x+1)). - R. J. Mathar, Jul 03 2009 [For a proof see the W. Lang comment above.]
a(n+1) = (A005248(n)^2 - A001906(n)^2)/4, for n => 0. - Richard R. Forberg, Sep 05 2013
From Diego Rattaggi, Apr 21 2020: (Start)
a(n) = 1 + A049684(n-2) for n>1.
Sum_{n>=2} 1/a(n) = phi = (1+sqrt(5))/2 = A001622.
Sum_{n>=1} 1/a(n) = phi^2 = 1 + phi. (End) [See a comment above for the proof]
a(n) = F(2*n - 3)*F(2*n - 5) = 1 + F(2*(n - 2))^2, for n >= 2, with F(-1) = 1. See the W. Lang comments above. - Wolfdieter Lang, May 26 2020

A081068 a(n) = (Lucas(4*n+2) + 2)/5, or Fibonacci(2*n+1)^2, or A081067(n)/5.

Original entry on oeis.org

1, 4, 25, 169, 1156, 7921, 54289, 372100, 2550409, 17480761, 119814916, 821223649, 5628750625, 38580030724, 264431464441, 1812440220361, 12422650078084, 85146110326225, 583600122205489, 4000054745112196, 27416783093579881
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

Comments

Indices of 12-gonal numbers which are also squares (A342709). - Bernard Schott, Mar 19 2021
Values of y in solutions of x^2 = 5*y^2 - 4*y in positive integers. See A360467 for how this relates to a problem regarding the subdivision of a square into four triangles of integer area. - Alexander M. Domashenko, Feb 26 2023
And the corresponding x values of x^2 = 5*y^2 - 4*y are in A033890. - Bernard Schott, Feb 26 2023

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 19.
  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081067.

Programs

  • Magma
    I:=[1, 4, 25]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
    
  • Magma
    [(Lucas(4*n+2) + 2)/5: n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,(luc(4*n+2)+2)/5) od: # James Sellers, Mar 05 2003
  • Mathematica
    CoefficientList[Series[-(1-4*x+x^2)/((x-1)*(x^2-7*x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-8,1},{1,4,25},50] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[(LucasL[4*n+2] + 2)/5, {n,0,30}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    main(size)={ return(concat([1],vector(size,n,fibonacci(2*n+1)^2))) } /* Anders Hellström, Jul 11 2015 */
    
  • PARI
    for(n=0,30, print1(fibonacci(2*n+1)^2, ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

a(n) = A001519(n+1)^2 = A122367(n)^2 = A058038(n) + 1.
a(n) = A103433(n+1) - A103433(n).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n)*Fibonacci(2*n+2) +1. - Gary Detlefs, Apr 01 2012
G.f.: (1-4*x+x^2)/((1-x)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012
Sum_{n>=0} 1/(a(n) + 1) = 1/3*sqrt(5). - Peter Bala, Nov 30 2013
Sum_{n>=0} 1/a(n) = sqrt(5) * Sum_{n>=1} (-1)^(n+1)*n/Fibonacci(2*n) (Jennings, 1994). - Amiram Eldar, Oct 30 2020
Product_{n>=1} (1 + 1/a(n)) = phi^2/2 (A239798), where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021

Extensions

More terms from James Sellers, Mar 05 2003

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A080239 Antidiagonal sums of triangle A035317.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 15, 24, 40, 64, 104, 168, 273, 441, 714, 1155, 1870, 3025, 4895, 7920, 12816, 20736, 33552, 54288, 87841, 142129, 229970, 372099, 602070, 974169, 1576239, 2550408, 4126648, 6677056, 10803704, 17480760, 28284465, 45765225, 74049690
Offset: 1

Views

Author

Paul Barry, Feb 11 2003

Keywords

Comments

Convolution of Fibonacci sequence with sequence (1, 0, 0, 0, 1, 0, 0, 0, 1, ...).
There is an interesting relation between a(n) and the Fibonacci sequence f(n). Sqrt(a(4n-2)) = f(2n). By using this fact we can calculate the value of a(n) by the following (1),(2),(3),(4) and (5). (1) a(1) = 1. (2) If n = 2 (mod 4), then a(n) = f((n+2)/2)^2. (3) If n = 3 (mod 4), then a(n) = (f((n+5)/2)^2-2f((n+1)/2)^2-1)/3. (4) If n = 0 (mod 4), then a(n) = (f((n+4)/2)^2+f(n/2)^2-1)/3. (5) If n = 1 (mod 4), then a(n) = (2f((n+3)/2)^2-f((n-1)/2)^2+1)/3. - Hiroshi Matsui and Ryohei Miyadera, Aug 08 2006
Sequences of the form s(0)=a, s(1)=b, s(n) = s(n-1) + s(n-2) + k if n mod m = p, else s(n) = s(n-1) + s(n-2) will have a form fib(n-1)*a + fib(n)*b + P(x)*k. a(n) is the P(x) sequence for m=4...s(n) = fib(n)*a + fib(n-1)*b + a(n-4-p)*k. - Gary Detlefs, Dec 05 2010
A different formula for a(n) as a function of the Fibonacci numbers f(n) may be conjectured. The pattern is of the form a(n) = f(p)*f(p-q) - 1 if n mod 4 = 3, else f(p)*f(p-q) where p = 2,2,4,4,4,4,6,6,6,6,8,8,8,8... and q = 0,1,3,2,0,1,3,2,0,1,3,2... p(n) = 2 * A002265(n+4) = 2*(floor((n+3)/2) - floor((n+3)/4)) (see comment by Jonathan Vos Post at A002265). A general formula for sequences having period 4 with terms a,b,c,d is given in A121262 (the discrete Fourier transform, as for all periodic sequences) and is a function of t(n)= 1/4*(2*cos(n*Pi/2) + 1 + (-1)^n). r4(a,b,c,d,n) = a*t(n+3) + b*t(n+2) + c*t(n+1) + d*t(n). This same formula may be used to subtract the 1 at n mod 4 = 3. a(n) = f(p(n))*f(p(n) - r4(1,0,3,2,n)) - r4(0,0,1,0,n). - Gary Detlefs, Dec 09 2010
This sequence is the sequence B4,1 on p. 34 of "Pascal-like triangles and Fibonacci-like sequences" in the references. In this article the authors treat more general sequences that have this sequence as an example. - Hiroshi Matsui and Ryohei Miyadera, Apr 11 2014
It is easy to see that a(n) = a(n-4) + f(n), where f(n) is the Fibonacci sequence. By using this repeatedly we have for a natural number m
a(4m) =a(4) + f(4m) + f(4m-4) + ... + f(8),
a(4m+1) = a(1) + f(4m) + f(4m-4) + ... + f(5),
a(4m+2) = a(2) + f(4m) + f(4m-4) + ... + f(6) and
a(4m+3) = a(3) + f(4m) + f(4m-4) + ... + f(7).
- Wataru Takeshita and Ryohei Miyadera, Apr 11 2014
a(n-1) counts partially ordered partitions of (n-1) into (1,2,3,4) where the position (order) of 2's is unimportant. E.g., a(5)=6 (n-1)=4 These are (4),(31),(13),(22),(211,121,112=one),(1111). - David Neil McGrath, May 12 2015

Crossrefs

Programs

  • GAP
    List([1..40], n-> Sum([0..Int((n-1)/4)], k-> Fibonacci(n-4*k) )); # G. C. Greubel, Jul 13 2019
  • Haskell
    a080239 n = a080239_list !! (n-1)
    a080239_list = 1 : 1 : zipWith (+)
       (tail a011765_list) (zipWith (+) a080239_list $ tail a080239_list)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    I:=[1,1,2,3,6,9]; [n le 6 select I[n] else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Jun 07 2015
    
  • Maple
    f:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 4 = 1 then t1:=1 else t1:=0; fi: f(n-1)+f(n-2)+t1; end; [seq(f(n), n=1..100)]; # N. J. A. Sloane, May 25 2008
    with(combinat): f:=n-> fibonacci(n): p:=n-> 2*(floor((n+3)/2)-floor((n+3)/4)): t:=n-> 1/4*(2*cos(n*Pi/2)+1+(-1)^n): r4:=(a,b,c,d,n)-> a*t(n+3)+b*t(n+2)+c*t(n+1)+d*t(n): seq(f(p(n))*f(p(n)-r4(1,0,3,2,n))-r4(0,0,1,0,n), n = 1..33); # Gary Detlefs, Dec 09 2010
    with(combinat): a:=proc(n); add(fibonacci(n-4*k),k=0..floor((n-1)/4)) end: seq(a(n), n = 1..33); # Johannes W. Meijer, Apr 19 2012
  • Mathematica
    (*f[n] is the Fibonacci sequence and a[n] is the sequence of A080239*) f[n_]:= f[n] =f[n-1] +f[n-2]; f[1]=1; f[2]=1; a[n_]:= Which[n==1, 1, Mod[n, 4]==2, f[(n+2)/2]^2, Mod[n, 4]==3, (f[(n+5)/2]^2 - 2f[(n + 1)/2]^2 -1)/3, Mod[n, 4]==0, (f[(n+4)/2]^2 + f[n/2]^2 -1)/3, Mod[n, 4] == 1, (2f[(n+3)/2]^2 -f[(n-1)/2]^2 +1)/3] (* Hiroshi Matsui and Ryohei Miyadera, Aug 08 2006 *)
    a=0; b=0; lst={a,b}; Do[z=a+b+1; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z,{n,4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 16 2010 *)
    (* Let f[n] be the Fibonacci sequence and a2[n] the sequence A080239 expressed by another formula discovered by Wataru Takeshita and Ryohei Miyadera *)
    f=Fibonacci; a2[n_]:= Block[{m, s}, s = Mod[n, 4]; m = (n-s)/4;
    Which[n==1, 1, n==2, 1, n==3, 2, s==0, 3 + Sum[f[4 i], {i, 2, m}], s == 1, 1 + Sum[f[4i+1], {i, 1, m}], s==2, 1 + Sum[f[4i+2], {i, 1, m}], s == 3, 2 + Sum[f[4i+3], {i, 1, m}]]]; Table[a2[n], {n, 1, 40}] (* Ryohei Miyadera, Apr 11 2014, minor update by Jean-François Alcover, Apr 29 2014 *)
    LinearRecurrence[{1, 1, 0, 1, -1, -1}, {1, 1, 2, 3, 6, 9}, 41] (* Vincenzo Librandi, Jun 07 2015 *)
  • PARI
    vector(40, n, f=fibonacci; sum(k=0,((n-1)\4), f(n-4*k))) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    [sum(fibonacci(n-4*k) for k in (0..floor((n-1)/4))) for n in (1..40)] # G. C. Greubel, Jul 13 2019
    

Formula

G.f.: x/((1-x^4)(1 - x - x^2)) = x/(1 - x - x^2 - x^4 + x^5 + x^6).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-5) - a(n-6).
a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..floor((n-j)/2)} binomial(n-j-2k, j-2k) for n>=0.
Another recurrence is given in the Maple code.
If n mod 4 = 1 then a(n) = a(n-1) + a(n-2) + 1, else a(n)= a(n-1) + a(n-2). - Gary Detlefs, Dec 05 2010
a(4n) = A058038(n) = Fibonacci(2n+2)*Fibonacci(2n).
a(4n+1) = A081016(n) = Fibonacci(2n+2)*Fibonacci(2n+1).
a(4n+2) = A049682(n+1) = Fibonacci(2n+2)^2.
a(4n+3) = A081018(n+1) = Fibonacci(2n+2)*Fibonacci(2n+3).
a(n) = 8*a(n-4) - 8*a(n-8) + a(n-12), n>12. - Gary Detlefs, Dec 10 2010
a(n+1) = a(n) + a(n-1) + A011765(n+1). - Reinhard Zumkeller, Jan 06 2012
a(n) = Sum_{k=0..floor((n-1)/4)} Fibonacci(n-4*k). - Johannes W. Meijer, Apr 19 2012
Showing 1-10 of 13 results. Next