cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A001622 Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.

Original entry on oeis.org

1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4, 7, 5
Offset: 1

Views

Author

Keywords

Comments

Also decimal expansion of the positive root of (x+1)^n - x^(2n). (x+1)^n - x^(2n) = 0 has only two real roots x1 = -(sqrt(5)-1)/2 and x2 = (sqrt(5)+1)/2 for all n > 0. - Cino Hilliard, May 27 2004
The golden ratio phi is the most irrational among irrational numbers; its successive continued fraction convergents F(n+1)/F(n) are the slowest to approximate to its actual value (I. Stewart, in "Nature's Numbers", Basic Books, 1997). - Lekraj Beedassy, Jan 21 2005
Let t=golden ratio. The lesser sqrt(5)-contraction rectangle has shape t-1, and the greater sqrt(5)-contraction rectangle has shape t. For definitions of shape and contraction rectangles, see A188739. - Clark Kimberling, Apr 16 2011
The golden ratio (often denoted by phi or tau) is the shape (i.e., length/width) of the golden rectangle, which has the special property that removal of a square from one end leaves a rectangle of the same shape as the original rectangle. Analogously, removals of certain isosceles triangles characterize side-golden and angle-golden triangles. Repeated removals in these configurations result in infinite partitions of golden rectangles and triangles into squares or isosceles triangles so as to match the continued fraction, [1,1,1,1,1,...] of tau. For the special shape of rectangle which partitions into golden rectangles so as to match the continued fraction [tau, tau, tau, ...], see A188635. For other rectangular shapes which depend on tau, see A189970, A190177, A190179, A180182. For triangular shapes which depend on tau, see A152149 and A188594; for tetrahedral, see A178988. - Clark Kimberling, May 06 2011
Given a pentagon ABCDE, 1/(phi)^2 <= (A*C^2 + C*E^2 + E*B^2 + B*D^2 + D*A^2) / (A*B^2 + B*C^2 + C*D^2 + D*E^2 + E*A^2) <= (phi)^2. - Seiichi Kirikami, Aug 18 2011
If a triangle has sides whose lengths form a geometric progression in the ratio of 1:r:r^2 then the triangle inequality condition requires that r be in the range 1/phi < r < phi. - Frank M Jackson, Oct 12 2011
The graphs of x-y=1 and x*y=1 meet at (tau,1/tau). - Clark Kimberling, Oct 19 2011
Also decimal expansion of the first root of x^sqrt(x+1) = sqrt(x+1)^x. - Michel Lagneau, Dec 02 2011
Also decimal expansion of the root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x). - Michel Lagneau, Apr 17 2012
This is the case n=5 of (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)): (1+sqrt(5))/2 = (Gamma(1/5)/Gamma(3/5))*(Gamma(4/5)/Gamma(2/5)). - Bruno Berselli, Dec 14 2012
Also decimal expansion of the only number x>1 such that (x^x)^(x^x) = (x^(x^x))^x = x^((x^x)^x). - Jaroslav Krizek, Feb 01 2014
For n >= 1, round(phi^prime(n)) == 1 (mod prime(n)) and, for n >= 3, round(phi^prime(n)) == 1 (mod 2*prime(n)). - Vladimir Shevelev, Mar 21 2014
The continuous radical sqrt(1+sqrt(1+sqrt(1+...))) tends to phi. - Giovanni Zedda, Jun 22 2019
Equals sqrt(2+sqrt(2-sqrt(2+sqrt(2-...)))). - Diego Rattaggi, Apr 17 2021
Given any complex p such that real(p) > -1, phi is the only real solution of the equation z^p+z^(p+1)=z^(p+2), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+2)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The only positive number such that its decimal part, its integral part and the number itself (x-[x], [x] and x) form a geometric progression is phi, with respectively (phi -1, 1, phi) and a ratio = phi. This is the answer to the 4th problem of the 7th Canadian Mathematical Olympiad in 1975 (see IMO link and Doob reference). - Bernard Schott, Dec 08 2021
The golden ratio is the unique number x such that f(n*x)*c(n/x) - f(n/x)*c(n*x) = n for all n >= 1, where f = floor and c = ceiling. - Clark Kimberling, Jan 04 2022
In The Second Scientific American Book Of Mathematical Puzzles and Diversions, Martin Gardner wrote that, by 1910, Mark Barr (1871-1950) gave phi as a symbol for the golden ratio. - Bernard Schott, May 01 2022
Phi is the length of the equal legs of an isosceles triangle with side c = phi^2, and internal angles (A,B) = 36 degrees, C = 108 degrees. - Gary W. Adamson, Jun 20 2022
The positive solution to x^2 - x - 1 = 0. - Michal Paulovic, Jan 16 2023
The minimal polynomial of phi^n, for nonvanishing integer n, is P(n, x) = x^2 - L(n)*x + (-1)^n, with the Lucas numbers L = A000032, extended to negative arguments with L(n) = (-1)^n*L(n). P(0, x) = (x - 1)^2 is not minimal. - Wolfdieter Lang, Feb 20 2025
This is the largest real zero x of (x^4 + x^2 + 1)^2 = 2*(x^8 + x^4 + 1). - Thomas Ordowski, May 14 2025

Examples

			1.6180339887498948482045868343656381177203091798057628621...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 112, 123, 184, 190, 203.
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1975, pages 76-77, 1993.
  • Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, River Edge, NJ, 1997.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 1.2.
  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, Simon & Schuster, NY, 1961.
  • Martin Gardner, Weird Water and Fuzzy Logic: More Notes of a Fringe Watcher, "The Cult of the Golden Ratio", Chapter 9, Prometheus Books, 1996, pages 90-97.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 287.
  • H. E. Huntley, The Divine Proportion, Dover, NY, 1970.
  • Mario Livio, The Golden Ratio, Broadway Books, NY, 2002. [see the review by G. Markowsky in the links field]
  • Gary B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics, Race Point Publishing (The Quarto Group), 2018. German translation: Der Goldene Schnitt, Librero, 2023.
  • Scott Olsen, The Golden Section, Walker & Co., NY, 2006.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 137-139.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Hans Walser, The Golden Section, Math. Assoc. of Amer. Washington DC 2001.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 36-40.
  • Claude-Jacques Willard, Le nombre d'or, Magnard, Paris, 1987.

Crossrefs

Programs

  • Maple
    Digits:=1000; evalf((1+sqrt(5))/2); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    RealDigits[(1 + Sqrt[5])/2, 10, 130] (* Stefan Steinerberger, Apr 02 2006 *)
    RealDigits[ Exp[ ArcSinh[1/2]], 10, 111][[1]] (* Robert G. Wilson v, Mar 01 2008 *)
    RealDigits[GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 28 2015 *)
  • PARI
    default(realprecision, 20080); x=(1+sqrt(5))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b001622.txt", n, " ", d));  \\ Harry J. Smith, Apr 19 2009
    
  • PARI
    /* Digit-by-digit method: write it as 0.5+sqrt(1.25) and start at hundredths digit */
    r=11; x=400; print(1); print(6);
    for(dig=1, 110, {d=0; while((20*r+d)*d <= x, d++);
    d--; /* while loop overshoots correct digit */
    print(d); x=100*(x-(20*r+d)*d); r=10*r+d})
    \\ Michael B. Porter, Oct 24 2009
    
  • PARI
    a(n) = floor(10^(n-1)*(quadgen(5))%10);
    alist(len) = digits(floor(quadgen(5)*10^(len-1))); \\ Chittaranjan Pardeshi, Jun 22 2022
    
  • Python
    from sympy import S
    def alst(n): # truncate extra last digit to avoid rounding
      return list(map(int, str(S.GoldenRatio.n(n+1)).replace(".", "")))[:-1]
    print(alst(105)) # Michael S. Branicky, Jan 06 2021

Formula

Equals Sum_{n>=2} 1/A064170(n) = 1/1 + 1/2 + 1/(2*5) + 1/(5*13) + 1/(13*34) + ... - Gary W. Adamson, Dec 15 2007
Equals Hypergeometric2F1([1/5, 4/5], [1/2], 3/4) = 2*cos((3/5)*arcsin(sqrt(3/4))). - Artur Jasinski, Oct 26 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
The fractional part of phi^n equals phi^(-n), if n is odd. For even n, the fractional part of phi^n is equal to 1-phi^(-n).
General formula: Provided x>1 satisfies x-x^(-1)=floor(x), where x=phi for this sequence, then:
for odd n: x^n - x^(-n) = floor(x^n), hence fract(x^n) = x^(-n),
for even n: x^n + x^(-n) = ceiling(x^n), hence fract(x^n) = 1 - x^(-n),
for all n>0: x^n + (-x)^(-n) = round(x^n).
x=phi is the minimal solution to x - x^(-1) = floor(x) (where floor(x)=1 in this case).
Other examples of constants x satisfying the relation x - x^(-1) = floor(x) include A014176 (the silver ratio: where floor(x)=2) and A098316 (the "bronze" ratio: where floor(x)=3). (End)
Equals 2*cos(Pi/5) = e^(i*Pi/5) + e^(-i*Pi/5). - Eric Desbiaux, Mar 19 2010
The solutions to x-x^(-1)=floor(x) are determined by x=(1/2)*(m+sqrt(m^2+4)), m>=1; x=phi for m=1. In terms of continued fractions the solutions can be described by x=[m;m,m,m,...], where m=1 for x=phi, and m=2 for the silver ratio A014176, and m=3 for the bronze ratio A098316. - Hieronymus Fischer, Oct 20 2010
Sum_{n>=1} x^n/n^2 = Pi^2/10 - (log(2)*sin(Pi/10))^2 where x = 2*sin(Pi/10) = this constant here. [Jolley, eq 360d]
phi = 1 + Sum_{k>=1} (-1)^(k-1)/(F(k)*F(k+1)), where F(n) is the n-th Fibonacci number (A000045). Proof. By Catalan's identity, F^2(n) - F(n-1)*F(n+1) = (-1)^(n-1). Therefore,(-1)^(n-1)/(F(n)*F(n+1)) = F(n)/F(n+1) - F(n-1)/F(n). Thus Sum_{k=1..n} (-1)^(k-1)/(F(k)*F(k+1)) = F(n)/F(n+1). If n goes to infinity, this tends to 1/phi = phi - 1. - Vladimir Shevelev, Feb 22 2013
phi^n = (A000032(n) + A000045(n)*sqrt(5)) / 2. - Thomas Ordowski, Jun 09 2013
Let P(q) = Product_{k>=1} (1 + q^(2*k-1)) (the g.f. of A000700), then A001622 = exp(Pi/6) * P(exp(-5*Pi)) / P(exp(-Pi)). - Stephen Beathard, Oct 06 2013
phi = i^(2/5) + i^(-2/5) = ((i^(4/5))+1) / (i^(2/5)) = 2*(i^(2/5) - (sin(Pi/5))i) = 2*(i^(-2/5) + (sin(Pi/5))i). - Jaroslav Krizek, Feb 03 2014
phi = sqrt(2/(3 - sqrt(5))) = sqrt(2)/A094883. This follows from the fact that ((1 + sqrt(5))^2)*(3 - sqrt(5)) = 8, so that ((1 + sqrt(5))/2)^2 = 2/(3 - sqrt(5)). - Geoffrey Caveney, Apr 19 2014
exp(arcsinh(cos(Pi/2-log(phi)*i))) = exp(arcsinh(sin(log(phi)*i))) = (sqrt(3) + i) / 2. - Geoffrey Caveney, Apr 23 2014
exp(arcsinh(cos(Pi/3))) = phi. - Geoffrey Caveney, Apr 23 2014
cos(Pi/3) + sqrt(1 + cos(Pi/3)^2). - Geoffrey Caveney, Apr 23 2014
2*phi = z^0 + z^1 - z^2 - z^3 + z^4, where z = exp(2*Pi*i/5). See the Wikipedia Kronecker-Weber theorem link. - Jonathan Sondow, Apr 24 2014
phi = 1/2 + sqrt(1 + (1/2)^2). - Geoffrey Caveney, Apr 25 2014
Phi is the limiting value of the iteration of x -> sqrt(1+x) on initial value a >= -1. - Chayim Lowen, Aug 30 2015
From Isaac Saffold, Feb 28 2018: (Start)
1 = Sum_{k=0..n} binomial(n, k) / phi^(n+k) for all nonnegative integers n.
1 = Sum_{n>=1} 1 / phi^(2n-1).
1 = Sum_{n>=2} 1 / phi^n.
phi = Sum_{n>=1} 1/phi^n. (End)
From Christian Katzmann, Mar 19 2018: (Start)
phi = Sum_{n>=0} (15*(2*n)! + 8*n!^2)/(2*n!^2*3^(2*n+2)).
phi = 1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
phi = Product_{k>=1} (1 + 2/(-1 + 2^k*(sqrt(4+(1-2/2^k)^2) + sqrt(4+(1-1/2^k)^2)))). - Gleb Koloskov, Jul 14 2021
Equals Product_{k>=1} (Fibonacci(3*k)^2 + (-1)^(k+1))/(Fibonacci(3*k)^2 + (-1)^k) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
From Michal Paulovic, Jan 16 2023: (Start)
Equals the real part of 2 * e^(i * Pi / 5).
Equals 2 * sin(3 * Pi / 10) = 2*A019863.
Equals -2 * sin(37 * Pi / 10).
Equals 1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / ...)))).
Equals (2 + 3 * (2 + 3 * (2 + 3 * ...)^(1/4))^(1/4))^(1/4).
Equals (1 + 2 * (1 + 2 * (1 + 2 * ...)^(1/3))^(1/3))^(1/3).
Equals (1 + phi + (1 + phi + (1 + phi + ...)^(1/3))^(1/3))^(1/3).
Equals 13/8 + Sum_{k=0..oo} (-1)^(k+1)*(2*k+1)!/((k+2)!*k!*4^(2*k+3)).
(End)
phi^n = phi * A000045(n) + A000045(n-1). - Gary W. Adamson, Sep 09 2023
The previous formula holds for integer n, with F(-n) = (-1)^(n+1)*F(n), for n >= 0, with F(n) = A000045(n), for n >= 0. phi^n are integers in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Sep 16 2023
Equals Product_{k>=0} ((5*k + 2)*(5*k + 3))/((5*k + 1)*(5*k + 4)). - Antonio Graciá Llorente, Feb 24 2024
From Antonio Graciá Llorente, Apr 21 2024: (Start)
Equals Product_{k>=1} phi^(-2^k) + 1, with phi = A001622.
Equals Product_{k>=0} ((5^(k+1) + 1)*(5^(k-1/2) + 1))/((5^k + 1)*(5^(k+1/2) + 1)).
Equals Product_{k>=1} 1 - (4*(-1)^k)/(10*k - 5 + (-1)^k) = Product_{k>=1} A047221(k)/A047209(k).
Equals Product_{k>=0} ((5*k + 7)*(5*k + 1 + (-1)^k))/((5*k + 1)*(5*k + 7 + (-1)^k)).
Equals Product_{k>=0} ((10*k + 3)*(10*k + 5)*(10*k + 8)^2)/((10*k + 2)*(10*k + 4)*(10*k + 9)^2).
Equals Product_{k>=5} 1 + 1/(Fibonacci(k) - (-1)^k).
Equals Product_{k>=2} 1 + 1/Fibonacci(2*k).
Equals Product_{k>=2} (Lucas(k)^2 + (-1)^k)/(Lucas(k)^2 - 4*(-1)^k). (End)

Extensions

Additional links contributed by Lekraj Beedassy, Dec 23 2003
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 24 2004
More terms from Stefan Steinerberger, Apr 02 2006
Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Edited by M. F. Hasler, Feb 24 2014

A002878 Bisection of Lucas sequence: a(n) = L(2*n+1).

Original entry on oeis.org

1, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596, 2139295485799
Offset: 0

Views

Author

Keywords

Comments

In any generalized Fibonacci sequence {f(i)}, Sum_{i=0..4n+1} f(i) = a(n)*f(2n+2). - Lekraj Beedassy, Dec 31 2002
The continued fraction expansion for F((2n+1)*(k+1))/F((2n+1)*k), k>=1 is [a(n),a(n),...,a(n)] where there are exactly k elements (F(n) denotes the n-th Fibonacci number). E.g., continued fraction for F(12)/F(9) is [4, 4,4]. - Benoit Cloitre, Apr 10 2003
See A135064 for a possible connection with Galois groups of quintics.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(5)). - Thomas Baruchel, Sep 15 2003
All positive integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = -4 together with b(n)=A001519(n), n>=0.
a(n) = L(n,-3)*(-1)^n, where L is defined as in A108299; see also A001519 for L(n,+3).
Inverse binomial transform of A030191. - Philippe Deléham, Oct 04 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Let r = (2n+1), then a(n), n>0 = Product_{k=1..floor((r-1)/2)} (1 + sin^2 k*Pi/r); e.g., a(3) = 29 = (3.4450418679...)*(4.801937735...)*(1.753020396...). - Gary W. Adamson, Nov 26 2008
a(n+1) is the Hankel transform of A001700(n)+A001700(n+1). - Paul Barry, Apr 21 2009
a(n) is equal to the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
Conjecture: for n > 0, a(n) = sqrt(Fibonacci(4*n+3) + Sum_{k=2..2*n} Fibonacci(2*k)). - Alex Ratushnyak, May 06 2012
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... . - R. J. Mathar, Aug 10 2012
The continued fraction [a(n); a(n), a(n), ...] = phi^(2n+1), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 05 2013
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 5. - Michel Lagneau, Feb 01 2014
Conjecture: except for the number 3, a(n) are the numbers such that a(n)^2+2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
Comment on the preceding conjecture: It is clear that all a(n) satisfy a(n)^2 + 2 = L(2*(2*n+1)) due to the identity (17 c) of Vajda, p. 177: L(2*n) + 2*(-1)^n = L(n)^2 (take n -> 2*n+1). - Wolfdieter Lang, Oct 10 2014
Limit_{n->oo} a(n+1)/a(n) = phi^2 = phi + 1 = (3+sqrt(5))/2. - Derek Orr, Jun 18 2015
If d[k] denotes the sequence of k-th differences of this sequence, then d[0](0), d[1](1), d[2](2), d[3](3), ... = A048876, cf. message to SeqFan list by P. Curtz on March 2, 2016. - M. F. Hasler, Mar 03 2016
a(n-1) and a(n) are the least phi-antipalindromic numbers (A178482) with 2*n and 2*n+1 digits in base phi, respectively. - Amiram Eldar, Jul 07 2021
Triangulate (hyperbolic) 2-space such that around every vertex exactly 7 triangles touch. Call any 7 triangles having a common vertex the first layer and let the (n+1)-st layer be all triangles that do not appear in any of the first n layers and have a common vertex with the n-th layer. Then the n-th layer contains 7*a(n-1) triangles. E.g., the first layer (by definition) contains 7 triangles, the second layer (the "ring" of triangles around the first layer) consists of 28 triangles, the third layer (the next "ring") consists of 77 triangles, and so on. - Nicolas Nagel, Aug 13 2022

Examples

			G.f. = 1 + 4*x + 11*x^2 + 29*x^3 + 76*x^4 + 199*x^5 + 521*x^6 + ... - _Michael Somos_, Jan 13 2019
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steven Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A000204. a(n) = A060923(n, 0), a(n)^2 = A081071(n).
Cf. A005248 [L(2n) = bisection (even n) of Lucas sequence].
Cf. A001906 [F(2n) = bisection (even n) of Fibonacci sequence], A000045, A002315, A004146, A029907, A113224, A153387, A153416, A178482, A192425, A285992 (prime subsequence).
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,2*n+1)[2] ); # G. C. Greubel, Jul 15 2019
    
  • Haskell
    a002878 n = a002878_list !! n
    a002878_list = zipWith (+) (tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Magma
    [Lucas(2*n+1): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    A002878 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,4]);
        else
            3*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    a[n_]:= FullSimplify[GoldenRatio^n - GoldenRatio^-n]; Table[a[n], {n, 1, 40, 2}]
    a[1]=1; a[2]=4; a[n_]:=a[n]= 3a[n-1] -a[n-2]; Array[a, 40]
    LinearRecurrence[{3, -1}, {1, 4}, 41] (* Jean-François Alcover, Sep 23 2017 *)
    Table[Sum[(-1)^Floor[k/2] Binomial[n -Floor[(k+1)/2], Floor[k/2]] 3^(n - k), {k, 0, n}], {n, 0, 40}] (* L. Edson Jeffery, Feb 26 2018 *)
    a[ n_] := Fibonacci[2n] + Fibonacci[2n+2]; (* Michael Somos, Jul 31 2018 *)
    a[ n_]:= LucasL[2n+1]; (* Michael Somos, Jan 13 2019 *)
  • PARI
    a(n)=fibonacci(2*n)+fibonacci(2*n+2) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    for(n=1,40,q=((1+sqrt(5))/2)^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec((1+x)/(1-3*x+x^2) + O(x^40)) \\ Altug Alkan, Oct 26 2015
    
  • Python
    a002878 = [1, 4]
    for n in range(30): a002878.append(3*a002878[-1] - a002878[-2])
    print(a002878) # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number2(2*n+1,1,-1) for n in (0..40)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n+1) = 3*a(n) - a(n-1).
G.f.: (1+x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(2*n, sqrt(5)) = S(n, 3) + S(n-1, 3); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 3) = A001906(n+1) (even-indexed Fibonacci numbers).
a(n) ~ phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -1) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = A005248(n+1) - A005248(n) = -1 + Sum_{k=0..n} A005248(k). - Lekraj Beedassy, Dec 31 2002
a(n) = 2^(-n)*A082762(n) = 4^(-n)*Sum_{k>=0} binomial(2*n+1, 2*k)*5^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = (-1)^n*Sum_{k=0..n} (-5)^k*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
From Paul Barry, May 27 2004: (Start)
Both bisection and binomial transform of A000204.
a(n) = Fibonacci(2n) + Fibonacci(2n+2). (End)
Sequence lists the numerators of sinh((2*n-1)*psi) where the denominators are 2; psi=log((1+sqrt(5))/2). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Mar 25 2009
a(n) = A001906(n) + A001906(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = floor(phi^(2n+1)), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 10 2012
a(n) = A014217(2*n+1) = A014217(2*n+2) - A014217(2*n). - Paul Curtz, Jun 11 2013
Sum_{n >= 0} 1/(a(n) + 5/a(n)) = 1/2. Compare with A005248, A001906, A075796. - Peter Bala, Nov 29 2013
a(n) = lim_{m->infinity} Fibonacci(m)^(4n+1)*Fibonacci(m+2*n+1)/ Sum_{k=0..m} Fibonacci(k)^(4n+2). - Yalcin Aktar, Sep 02 2014
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 4, 0, 11, 0, 29, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -1, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
b(n) = (1/2)*((-1)^n - 1)*F(n) + (1 + (-1)^(n-1))*F(n+1), where F(n) is a Fibonacci number. The o.g.f. is x*(1 + x^2)/(1 - 3*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = sqrt(5*F(2*n+1)^2-4), where F(n) = A000045(n). - Derek Orr, Jun 18 2015
For n > 1, a(n) = 5*F(2*n-1) + L(2*n-3) with F(n) = A000045(n). - J. M. Bergot, Oct 25 2015
For n > 0, a(n) = L(n-1)*L(n+2) + 4*(-1)^n. - J. M. Bergot, Oct 25 2015
For n > 2, a(n) = a(n-2) + F(n+2)^2 + F(n-3)^2 = L(2*n-3) + F(n+2)^2 + F(n-3)^2. - J. M. Bergot, Feb 05 2016 and Feb 07 2016
E.g.f.: ((sqrt(5) - 5)*exp((3-sqrt(5))*x/2) + (5 + sqrt(5))*exp((3+sqrt(5))*x/2))/(2*sqrt(5)). - Ilya Gutkovskiy, Apr 24 2016
a(n) = Sum_{k=0..n} (-1)^floor(k/2)*binomial(n-floor((k+1)/2), floor(k/2))*3^(n-k). - L. Edson Jeffery, Feb 26 2018
a(n)*F(m+2n-1) = F(m+4n-2)-F(m), with Fibonacci number F(m), empirical observation. - Dan Weisz, Jul 30 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jul 31 2018
Sum_{n>=0} 1/a(n) = A153416. - Amiram Eldar, Nov 11 2020
a(n) = Product_{k=1..n} (1 + 4*sin(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(5)) * A153387 (Carlitz, 1967). - Amiram Eldar, Feb 05 2022
The continued fraction [a(n);a(n),a(n),...] = phi^(2*n+1), with phi = A001622. - A.H.M. Smeets, Feb 25 2022
a(n) = 2*sinh((2*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
This gives the sequence with 2 1's prepended: b(1)=b(2)=1 and, for k >= 3, b(k) = Sum_{j=1..k-2} (2^(k-j-1) - 1)*b(j). - Neal Gersh Tolunsky, Oct 28 2022 (formula due to Jon E. Schoenfield)
For n > 0, a(n) = 1 + 1/(Sum_{k>=1} F(k)/phi^(2*n*k + k)). - Diego Rattaggi, Nov 08 2023
From Peter Bala, Apr 16 2025: (Start)
a(3*n+1) = a(n)^3 + 3*a(n).
a(5*n+2) = a(n)^5 + 5*a(n)^3 + 5*a(n).
a(7*n+3) = a(n)^7 + 7*a(n)^5 + 14*a(n)^3 + 7*a(n).
For the coefficients see A034807.
The general result is: for k >= 0, a(k*n + (k-1)/2) = 2 * T(k, a(n)/2), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind and a(n) = ((1 + sqrt(5))/2)^(2*n+1) + ((1 - sqrt(5))/2)^(2*n+1).
Sum_{n >= 0} (-1)^n/a(n) = (1/4)* (theta_3(phi) - theta_3(phi^2)) = 0.815947983588122..., where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122) and phi = (sqrt(5) - 1)/2. See Borwein and Borwein, Exercise 3 a, p. 94 and Carlitz, 1967. (End)
From Peter Bala, May 15 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/5 (telescoping series: 5/(a(n) - 1/a(n)) = 1/A001906(n+1) + 1/A001906(n) ).
More generally, for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1) = Lucas(2*k) - 2.
For k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(n) + L(2*k)^2/a(n)) = (1/5) * A064170(k+2).
Sum_{n >= 1} 1/(a(n) + 9/a(n)) = 3/10 (follows from 1/(a(n) + 9/a(n)) = L(2*n)/A081076(n) - L(2*n+2)/A081076(n+1) ).
More generally, it appears that for k >= 1, Sum_{n >= 1} 1/(a(n) + L(2*k)^2/a(n)) is rational.
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5) [telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 5*(1 - 4/A240926(n+1)) ]. (End)

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A049684 a(n) = Fibonacci(2n)^2.

Original entry on oeis.org

0, 1, 9, 64, 441, 3025, 20736, 142129, 974169, 6677056, 45765225, 313679521, 2149991424, 14736260449, 101003831721, 692290561600, 4745030099481, 32522920134769, 222915410843904, 1527884955772561, 10472279279564025, 71778070001175616, 491974210728665289
Offset: 0

Views

Author

Keywords

Comments

This is the r=9 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Apparently, this sequence consists of those nonnegative integers k for which x*(x^2-1)*y*(y^2-1) = k*(k^2-1) has a solution in nonnegative integers x, y. If k = a(n), x = A000045(2*n-1) and y = A000045(2*n+1) are a solution. See A374375 for numbers k*(k^2-1) that can be written as a product of two or more factors of the form x*(x^2-1). - Pontus von Brömssen, Jul 14 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 27.
  • H. J. H. Tuenter, Fibonacci summation identities arising from Catalan's identity, Fib. Q., 60:4 (2022), 312-319.

Crossrefs

First differences give A033890.
First differences of A103434.
Bisection of A007598 and A064841.
a(n) = A064170(n+2) - 1 = (1/5) A081070.

Programs

  • Mathematica
    Join[{a=0, b=1}, Table[c=7*b-1*a+2; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    Fibonacci[Range[0, 40, 2]]^2 (* Harvey P. Dale, Mar 22 2012 *)
    Table[Fibonacci[n - 1] Fibonacci[n + 1] - 1, {n, 0, 40, 2}] (* Bruno Berselli, Feb 12 2015 *)
    LinearRecurrence[{8, -8, 1},{0, 1, 9},21] (* Ray Chandler, Sep 23 2015 *)
  • MuPAD
    numlib::fibonacci(2*n)^2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=fibonacci(2*n)^2
    
  • Sage
    [fibonacci(2*n)^2 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009

Formula

G.f.: (x+x^2) / ((1-x)*(1-7*x+x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=9.
a(n) = 7*a(n-1) - a(n-2) + 2 = A001906(n)^2.
a(n) = (A000032(4*n)-2)/5. [This is in Koshy's book (reference under A065563) on p. 88, attributed to Lucas 1876.] - Wolfdieter Lang, Aug 27 2012
a(n) = 1/5*(-2 + ( (7+sqrt(45))/2 )^n + ( (7-sqrt(45))/2 )^n). - Ralf Stephan, Apr 14 2004
a(n) = 2*(T(n, 7/2)-1)/5 with twice the Chebyshev polynomials of the first kind evaluated at x=7/2: 2*T(n, 7/2)= A056854(n). - Wolfdieter Lang, Oct 18 2004
a(n) = F(2*n-1)*F(2*n+1)-1, see A064170 - Bruno Berselli, Feb 12 2015
a(n) = Sum_{i=1..n} F(4*i-2) for n>0. - Bruno Berselli, Aug 25 2015
From Peter Bala, Nov 20 2019: (Start)
Sum_{n >= 1} 1/(a(n) + 1) = (sqrt(5) - 1)/2.
Sum_{n >= 1} 1/(a(n) + 4) = (3*sqrt(5) - 2)/16. More generally, it appears that
Sum_{n >= 1} 1/(a(n) + F(2*k+1)^2) = ((2*k+1)*F(2*k+1)*sqrt(5) - Lucas(2*k+1))/ (2*F(2*k+1)*F(4*k+2)) for k = 0,1,2,....
Sum_{n >= 2} 1/(a(n) - 1) = (8 - 3*sqrt(5))/9. (End)
E.g.f.: (1/5)*(-2*exp(x) + exp((16*x)/(1 + sqrt(5))^4) + exp((1/2)*(7 + 3*sqrt(5))*x)). - Stefano Spezia, Nov 23 2019
Product_{n>=2} (1 - 1/a(n)) = phi^2/3, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021
a(n) = A092521(n-1)+A092521(n). - R. J. Mathar, Nov 22 2024

Extensions

Better description and more terms from Michael Somos

A350922 a(0) = 2, a(1) = 5, and a(n) = 7*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

2, 5, 29, 194, 1325, 9077, 62210, 426389, 2922509, 20031170, 137295677, 941038565, 6449974274, 44208781349, 303011495165, 2076871684802, 14235090298445, 97568760404309, 668746232531714, 4583654867317685, 31416837838692077, 215334210003526850, 1475922632185995869
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
From William P. Orrick, Dec 20 2023: (Start)
Every term is a Markov number (see A002559) and, for n > 1, corresponds to a node of the Markov tree A368546 whose sibling and ancestors are all odd-indexed Fibonacci numbers. For n > 1, a(n) is the label of the node obtained from the root by going left n - 2 times and then right. Its Farey index, described in the comments to A368546, is 2 / (2*n - 1).
For instance, a(3) = 194 comes from going left once from the root node of the Markov tree and then right, which corresponds to the sequence of Markov numbers 5, 13, 194. The corresponding sequence of Farey indices is 1/2, 1/3, 2/5. The sibling of the final node corresponds to Markov number 34 and Farey index 1/4. (End)

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350923, A350924, A350925, A350926.

Programs

  • Mathematica
    CoefficientList[Series[(2 - x)*(1 - 5*x)/((1 - x)*(1 - 7*x + x^2)), {x, 0, 22}],x] (* James C. McMahon, Dec 22 2023 *)

Formula

G.f.: (2 - x)*(1 - 5*x)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 3*A049684(n) + 2 = 3*A064170(n+2) - 1. - Hugo Pfoertner, Jan 22 2022
a(n) = 3*A000045(2*n - 1) * A000045(2*n + 1) - 1 = A000045(2*n - 1)^2 + A000045(2*n + 1)^2. - William P. Orrick, Jan 08 2023

A337928 Numbers w such that (F(2n+1)^2, -F(2n)^2, -w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 5, 31, 209, 1429, 9791, 67105, 459941, 3152479, 21607409, 148099381, 1015088255, 6957518401, 47687540549, 326855265439, 2240299317521, 15355239957205, 105246380382911, 721369422723169, 4944339578679269, 33889007628031711, 232278713817542705
Offset: 0

Views

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(5)^2)^3 + 2*(-F(4)^2)^3 + (-31)^3 = 2*(25)^3 + 2*(-9)^3 + (-31)^3 = 1, a(2) = 31.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n+1]^6 - 2*Fibonacci[2n]^6 - 1)^(1/3), {n, 0, 21}]
    Table[(Fibonacci[2n+1]*Fibonacci[2n+2]- Fibonacci[2n]^2), {n, 0, 21}] (* Wolfgang Berndt, May 26 2023 *)
    LinearRecurrence[{8,-8,1},{1,5,31},30] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    Vec((1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)) + O(x^20)) \\ Colin Barker, Oct 01 2020

Formula

a(n) = (2*F(2*n+1)^6 - 2*F(2*n)^6 - 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: (1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>2.
(End)
a(n) = 2*A081018(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A064170(n+2) + A033888(n). - Flávio V. Fernandes, Jan 10 2021
a(n) = F(2*n+1)*F(2*n+2) - F(2*n)^2. - Wolfgang Berndt, May 26 2023
a(2*n-1) = 5 + 6*Sum_{k=1..n-1} F(8*k+1), a(2*n) = 1 + 6*Sum_{k=1..n} F(8*k-3). - XU Pingya, Jun 09 2024

A337929 Numbers w such that (F(2*n-1)^2, -F(2*n)^2, w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 11, 79, 545, 3739, 25631, 175681, 1204139, 8253295, 56568929, 387729211, 2657535551, 18215019649, 124847601995, 855718194319, 5865179758241, 40200540113371, 275538601035359, 1888569667134145, 12944449068903659, 88722573815191471, 608113567637436641
Offset: 1

Views

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(3)^2)^3 + 2*(-F(4)^2)^3 + 11^3 = 2*4^3 + 2*(-9)^3 + 11^3 = 1, 11 is a term.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n]^6 - 2*Fibonacci[2n-1]^6 + 1)^(1/3), {n, 22}]
    LinearRecurrence[{8,-8,1},{1,11,79},30] (* Harvey P. Dale, Aug 23 2021 *)

Formula

a(n) = (2*F(2*n)^6 - 2*F(2*n-1)^6 + 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: x*(1 + 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>3.
(End)
a(n) = 2*A003482(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A033888(n) - A064170(n+2). - Flávio V. Fernandes, Jan 10 2021

A094568 Triangle of binary products of Fibonacci numbers.

Original entry on oeis.org

2, 3, 5, 8, 10, 13, 21, 24, 26, 34, 55, 63, 65, 68, 89, 144, 165, 168, 170, 178, 233, 377, 432, 440, 442, 445, 466, 610, 987, 1131, 1152, 1155, 1157, 1165, 1220, 1597, 2584, 2961, 3016, 3024, 3026, 3029, 3050, 3194, 4181, 6765, 7752, 7896, 7917, 7920, 7922
Offset: 1

Views

Author

Clark Kimberling, May 12 2004

Keywords

Comments

Start with the triangle in A094566: starting with row 2, expel from each row the term that is a square of a Fibonacci number (A007598). The remaining triangle is this sequence.
In each row, the difference between neighboring terms is a Fibonacci number. For n>1, row n consists of n numbers, first F(2n) and last F(2n+1).
Central numbers: (2,10,65,442,...), essentially A064170.
Alternating row sums: 2,2,11,11,78,78,...; the sequence b=(2,11,78,...) is A094569.

Examples

			First four rows:
2
3 5
8 10 13
21 24 26 34
		

Crossrefs

Programs

  • PARI
    pef(k, n) = fibonacci(2*k)*fibonacci(2*n-2*k);
    pof(k, n) = fibonacci(2*n-2*k+1)*fibonacci(2*k-1);
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ from A010056
    isfib2(x) = issquare(x) && isfib(sqrtint(x));
    tabl(nn) = {for (n=2, nn, if (n % 2 == 0, for (k=1, n/2, if (! isfib2(x = pef(k,n)), print1(x, ", "));); forstep (k=n/2, 1, -1, if (! isfib2(x = pof(k,n)), print1(x, ", "));), for (k=1, n\2, if (! isfib2(x = pef(k,n)), print1(x, ", "));); forstep (k=n\2+1, 1, -1, if (! isfib2(x = pof(k,n)), print1(x, ", ")););); print(););} \\ Michel Marcus, May 04 2016

A081076 a(n) = Lucas(4n) + 3, or 5*Fibonacci(2n-1)*Fibonacci(2n+1).

Original entry on oeis.org

5, 10, 50, 325, 2210, 15130, 103685, 710650, 4870850, 33385285, 228826130, 1568397610, 10749957125, 73681302250, 505019158610, 3461452808005, 23725150497410, 162614600673850, 1114577054219525, 7639424778862810
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A056854.

Programs

  • GAP
    List([0..30], n-> Lucas(1, -1, 4*n)[2] +3 ); # G. C. Greubel, May 26 2020
  • Magma
    [Lucas(4*n) +3: n in [0..30]]; // G. C. Greubel, May 26 2020
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 30 do printf(`%d,`,luc(4*n)+3) od: # James Sellers, Mar 05 2003
  • Mathematica
    Table[LucasL[4 n] + 3, {n,0,30}] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • PARI
    Vec(-5*(2*x^2-6*x+1)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Michel Marcus, Dec 23 2014
    
  • Sage
    [lucas_number2(4*n,1,-1) + 3 for n in (0..30)] # G. C. Greubel, May 26 2020
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: 5*(1 -6*x +2*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 22 2012
Sum_{n>=0} 1/a(n) = phi/5, where phi = A001622 = (1 + sqrt(5))/2. - Diego Rattaggi, Apr 22 2020
From G. C. Greubel, May 26 2020: (Start)
a(n) = 5*A064170(n+1).
a(n) = Lucas(n)^4 - 4*(-1)^n*Lucas(n)^2 + 5.
E.g.f.: 3*exp(x) + 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). (End)

Extensions

More terms from James Sellers, Mar 05 2003

A262342 Area of Lewis Carroll's paradoxical F(2n+1) X F(2n+3) rectangle.

Original entry on oeis.org

10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290, 3372041405099481410
Offset: 1

Views

Author

Jonathan Sondow, Oct 16 2015

Keywords

Comments

Warren Weaver (1938): "In a familiar geometrical paradox a square of area 8 X 8 = 64 square units is cut into four parts which may be refitted to form a rectangle of apparent area 5 X 13 = 65 square units.... Lewis Carroll generalized this paradox...."
Carroll cuts a F(2n+2) X F(2n+2) square into four parts, where F(n) is the n-th Fibonacci number. Two parts are right triangles with legs F(2n) and F(2n+2); two are right trapezoids three of whose sides are F(2n), F(2n+1), and F(2n+1). (Thus n > 0.) The paradox (or dissection fallacy) depends on Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1.
For an extension of the paradox to a F(2n+1) X F(2n+1) square using Cassini's identity F(2n) * F(2n+2) = F(2n+1)^2 - 1, see Dudeney (1970), Gardner (1956), Horadam (1962), Knott (2014), Kumar (1964), and Sillke (2004). Sillke also has many additional references and links.

Examples

			F(3) * F(5) = 2 * 5 = 10 = 3^2 + 1 = F(4)^2 + 1, so a(1) = 10.
G.f. = 10*x + 65*x^2 + 442*x^3 + 3026*x^4 + 20737*x^5 + 142130*x^6 + 974170*x^7 + ...
		

References

  • W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th edition, Dover, 1987, p. 85.
  • Henry E. Dudeney, 536 Puzzles and Curious Problems, Scribner, reprinted 1970, Problems 352-353 and their answers.
  • Martin Gardner, Mathematics, Magic and Mystery, Dover, 1956, Chap. 8.
  • Edward Wakeling, Rediscovered Lewis Carroll Puzzles, Dover, 1995, p. 12.
  • David Wells, The Penguin Book of Curious and Interesting Puzzles, Penguin, 1997, Puzzle 143.

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+1)*Fibonacci(2*n+3) : n in [1..30]]; // Wesley Ivan Hurt, Oct 16 2015
    
  • Maple
    with(combinat): A262342:=n->fibonacci(2*n+1)*fibonacci(2*n+3): seq(A262342(n), n=1..30); # Wesley Ivan Hurt, Oct 16 2015
  • Mathematica
    Table[Fibonacci[2 n + 1] Fibonacci[2 n + 3], {n, 22}]
    LinearRecurrence[{8,-8,1},{10,65,442},30] (* Harvey P. Dale, Aug 06 2024 *)
  • PARI
    Vec(-x*(2*x^2-15*x+10)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Colin Barker, Oct 17 2015
    
  • PARI
    a(n) = fibonacci(2*n+1) * fibonacci(2*n+3) \\ Altug Alkan, Oct 17 2015

Formula

a(n) = Fibonacci(2n+1) * Fibonacci(2n+3) = Fibonacci(2n+2)^2 + 1 for n > 0.
From Colin Barker, Oct 17 2015: (Start)
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: -x*(2*x^2-15*x+10) / ((x-1)*(x^2-7*x+1)).
(End)
a(3*k-2) mod 2 = 0; a(3*k-1) mod 2 = 1; a(3*k) mod 2 = 0, k > 0. - Altug Alkan, Oct 17 2015
a(n) = A059929(2*n+1) = A070550(4*n+1) = A166516(2*n+2) = A190018(8*n) = A236165(4*n+4) = A245306(2*n+2). - Bruno Berselli, Oct 17 2015
a(n) = A064170(n+3). - Alois P. Heinz, Oct 17 2015
E.g.f.: (1/5)*((1/phi*r)*exp(b*x) + (phi^4/r)*exp(a*x) + 3*exp(x) - 10), where r = 2*phi+1, 2*a=7+3*sqrt(5), 2*b=7-3*sqrt(5). - G. C. Greubel, Oct 17 2015
a(n) = (A337928(n+1) - A337929(n+1)) / 2. - Flávio V. Fernandes, Feb 06 2021
Sum_{n>=1} 1/a(n) = sqrt(5)/2 - 1 = A176055 - 2. - Amiram Eldar, Mar 04 2021

A360467 a(n) = Fibonacci(4*n+2) + 3*Fibonacci(2*n+1)^2.

Original entry on oeis.org

4, 20, 130, 884, 6052, 41474, 284260, 1948340, 13354114, 91530452, 627359044, 4299982850, 29472520900, 202007663444, 1384581123202, 9490060198964, 65045840269540, 445830821687810, 3055769911545124, 20944558559128052, 143556140002351234, 983948421457330580
Offset: 0

Views

Author

Keywords

Comments

Values of x + 3*y in solutions of x^2 = 5*y^2 - 4*y in positive integers. In the solutions, the values of x and y are given by Fibonacci(4*n + 2) and Fibonacci(2*n + 1)^2 respectively.
The above Diophantine equation arises out of the following problem regarding the subdivision of a square into four triangles of integer area. For n >= 1, the sequence gives the areas of the squares in the solutions (see illustration in Links). Two lines are drawn from a corner of a square to points on the opposing sides. A third line is added between the two points so that the square is divided into four triangles. The area of each triangle is required to be an integer and those of the right triangles to form an arithmetic progression with difference 1. The smallest right triangle by area is the one formed by the third line. In the solutions, the area of the inner triangle is given by Fibonacci(4*n + 2) and the total area of the three right triangles is 3*Fibonacci(2*n + 1)^2. The area of the square is then equal to a(n).

Examples

			a(2) = F(4*2+2) + 3*F(2*2 +1)^2 = F(10) + 3*F(5)^2 = 55 + 3*5^2 = 130.
a(4) = F(4*4+2) + 3*F(2*4 +1)^2 = F(18) + 3*F(9)^2 = 2584+ 3*34^2 = 6052.
G.f. = 4 + 20*x + 130*x^2 + 884*x^3 + 6052*x^4 + ... - _Michael Somos_, Mar 02 2023
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return [4, 20, 130][n + 1] fi;
    a(n-3) - 8 * (a(n-2) - a(n-1)) end: seq(a(n), n = 0..22); # Peter Luschny, Feb 17 2023
  • Mathematica
    LinearRecurrence[{8, -8, 1}, {4, 20, 130}, 22] (* Amiram Eldar, Feb 17 2023 *)
    a[ n_] := 2 * Fibonacci[2*n+1] * Fibonacci[2*n+3]; (* Michael Somos, Mar 02 2023 *)
  • PARI
    Vec(2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)) + O(x^25)) \\ Andrew Howroyd, Feb 16 2023
    
  • SageMath
    print([2*(lucas_number2(n+1, 7, 1) + 3) // 5 for n in range(23)]) # Peter Luschny, Feb 17 2023

Formula

a(n) = A033890(n) + 3*A081068(n)^2.
a(n) = Fibonacci(2*n+1)*(Fibonacci(2*n) + Fibonacci(2*n+2) + 3*Fibonacci(2*n+1)).
a(n) = 2*A064170(n+3).
G.f.: 2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)). - Andrew Howroyd, Feb 16 2023
a(n) = a(n-3) - 8 * (a(n-2) - a(n-1)) for n >= 3. - Peter Luschny, Feb 17 2023
a(n) = a(-2-n) = 2*F(2*n+1) * F(2*n+3) = A295683(4*(n+1)) for all n in Z. - Michael Somos, Mar 02 2023
Showing 1-10 of 12 results. Next