cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1787 results. Next

A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Comments

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,1)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+1. - Michael De Vlieger, Jul 28 2025

Examples

			From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
		

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.

Programs

  • Haskell
    a000201 n = a000201_list !! (n-1)
    a000201_list = f [1..] [1..] where
       f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
    -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
    
  • Maple
    Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
  • Maxima
    makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)
    
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    def aupton(terms):
      alst, aset = [None, 1], {1}
      for n in range(1, terms):
        an = alst[n] + (1 if n not in aset else 2)
        alst.append(an); aset.add(an)
      return alst[1:]
    print(aupton(68)) # Michael S. Branicky, May 14 2021
    
  • Python
    from math import isqrt
    def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022

Formula

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012

A004922 a(n) = floor(n*phi^7), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*((1 + Sqrt(5))/2)^7): n in [0..50]]; // Vincenzo Librandi, Jul 22 2015
  • Mathematica
    Table[Floor[n ((1 + Sqrt[5])/2)^7], {n, 0, 50}] (* Vincenzo Librandi, Jul 22 2015 *)
  • Python
    from sympy import sqrt
    phi = (1 + sqrt(5))/2
    for n in range(0,101): print(int(n*phi**7), end=', ') # Karl V. Keller, Jr., Jul 22 2015
    

A265288 Decimal expansion of Sum_{n >= 1} (phi - c(2*n-1)), where phi is the golden ratio (A001622), and c(n) is the n-th convergent to the continued fraction expansion of phi.

Original entry on oeis.org

7, 5, 7, 2, 0, 4, 3, 7, 5, 0, 4, 6, 0, 0, 7, 3, 3, 8, 6, 4, 7, 8, 2, 5, 2, 6, 0, 6, 7, 3, 7, 7, 4, 8, 3, 0, 1, 0, 5, 8, 5, 2, 0, 1, 6, 1, 5, 6, 6, 7, 8, 4, 1, 9, 2, 9, 3, 2, 0, 1, 5, 5, 1, 1, 3, 4, 7, 1, 9, 0, 7, 3, 6, 6, 1, 7, 8, 3, 5, 7, 6, 6, 9, 7, 9, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 06 2015

Keywords

Comments

Define the lower deviance of x > 0 by dL(x) = Sum_{n>=1} (x - c(2*n-1,x)), where c(k,x) = k-th convergent to x. The greatest lower deviance occurs when x = golden ratio, so that this constant is the absolute maximal lower deviance.
Guide to related constants (as sequences):
x Sum{x-c(2*n-1)} Sum{c(2*n)-x} Sum|c(2*n)-c(2*n-1)|
(1+sqrt(5))/2 A265288 A265289 A265290

Examples

			0.75720437504600733864782526067377483...
The convergents to x are c(1) = 1, c(2) = 2, c(3) = 3/2, c(4) = 5/3, ..., so that
A265288 = (x - 1) + (x - 3/2) + (x - 8/5) + ... ;
A265289 = (2 - x) + (5/3 - x) + (13/8 - x ) + ... ;
A265290 = (2 - 1) + (5/3 - 3/2) + (13/8 - 8/5) + ...
		

Crossrefs

Programs

  • Maple
    x := -(3 - sqrt(5))/2:
    evalf(sqrt(5)*add(x^(n*(n+1)/2)/(x^n - 1), n = 1..24), 100); # Peter Bala, Aug 21 2022
  • Mathematica
    x = GoldenRatio; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265288 *)
    RealDigits[s2, 10, 120][[1]]  (* A265289 *)
    RealDigits[s1 + s2, 10, 120][[1]] (* A265290 *)

Formula

Equals Sum_{k >= 1} 1/(phi^(2*k-1) * F(2*k-1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
From Peter Bala, Aug 19 2022: (Start)
The constant equals Sum_{k >= 1} (-1)^(k+1)/F(2*k). The constant also equals (3/5)*Sum_{k >= 1} (-1)^(k+1)/(F(2*k)*F(2*k+2)*F(2*k+4)) + 11/15.
A rapidly converging series for the constant is sqrt(5) * Sum_{k >= 1} x^(k*(k+1)/2)/ (x^k - 1) at x = phi - 2 = -(3 - sqrt(5))/2. (End)

A026352 a(n) = floor(n*tau) + n + 1 where tau is the golden ratio A001622.

Original entry on oeis.org

1, 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 42, 45, 48, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, 76, 79, 82, 84, 87, 90, 92, 95, 97, 100, 103, 105, 108, 110, 113, 116, 118, 121, 124, 126, 129, 131, 134, 137, 139, 142, 144
Offset: 0

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

a(n) = greatest k such that s(k) = n+1, where s = A026350.
Indices at which blocks (0;1) occur in infinite Fibonacci word; i.e., n such that A005614(n)=0 and A005614(n+1)=1. - Benoit Cloitre, Nov 15 2003
Except for the first term, these are the numbers whose lazy Fibonacci representation (see A095791) includes both 1 and 2; thus this sequence is a subsequence of the lower Wythoff sequence, A000201. - Clark Kimberling, Jun 10 2004 [A-number typo corrected by Nathan Fox, May 03 2014]
a(n) = n-th number k whose lazy Fibonacci representation (as in A095791) has more summands than that of k-1. - Clark Kimberling, Jun 12 2004
a(n) = position of n-th 0 in A096270. - Clark Kimberling, Apr 22 2011
Maximum number of chips in a pile created at each step in the game described by Roland Schroeder in his comment at A000201. (From Allan C. Wechsler via Seqfan.)
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,3)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+3. - Michael De Vlieger, Jul 28 2025

Crossrefs

Essentially same as A004957.
Subsequence of A000201.
Complement of A026351.

Programs

Formula

a(n) = A026351(n)+n. - R. J. Mathar, Jun 24 2025

A004919 a(n) = floor(n*phi^4), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 6, 13, 20, 27, 34, 41, 47, 54, 61, 68, 75, 82, 89, 95, 102, 109, 116, 123, 130, 137, 143, 150, 157, 164, 171, 178, 185, 191, 198, 205, 212, 219, 226, 233, 239, 246, 253, 260, 267, 274, 281, 287, 294, 301, 308
Offset: 0

Views

Author

Keywords

Comments

The golden section or golden ratio is now usually denoted by "phi", but it in the older literature it was more often denoted by "tau." - N. J. A. Sloane, Feb 17 2013

Crossrefs

Programs

  • Magma
    [Floor((7+3*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Aug 22 2023
    
  • Mathematica
    With[{c=GoldenRatio^4},Floor[c*Range[0,50]]] (* Harvey P. Dale, Apr 11 2012 *)
  • Python
    from math import isqrt
    def A004919(n): return (3*n+isqrt(45*n**2)>>1)+(n<<1) # Chai Wah Wu, Aug 17 2022
    
  • SageMath
    [floor(golden_ratio^4*n) for n in range(61)] # G. C. Greubel, Aug 22 2023

Formula

a(n) = 2*n + floor(3*n*tau). [Formula corrected by Charles R Greathouse IV, Mar 11 2011]

A004924 a(n) = floor(n*phi^9), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 76, 152, 228, 304, 380, 456, 532, 608, 684, 760, 836, 912, 988, 1064, 1140, 1216, 1292, 1368, 1444, 1520, 1596, 1672, 1748, 1824, 1900, 1976, 2052, 2128, 2204, 2280, 2356, 2432, 2508, 2584, 2660, 2736
Offset: 0

Views

Author

Keywords

Comments

The first differences a(n) - a(n-1) generally equal 76 with exceptions for example at n = 77, 153, 229, 305, 381, 457, ..., 5777, 5854, 5930, .... where they equal 77. - R. J. Mathar, Jan 11 2008

Crossrefs

Programs

  • Magma
    [Floor((38+17*Sqrt(5))*n): n in [0..60]]; // G. C. Greubel, Aug 24 2023
    
  • Mathematica
    Floor[GoldenRatio^9*Range[0, 60]] (* G. C. Greubel, Aug 24 2023 *)
  • SageMath
    [floor(golden_ratio^9*n) for n in range(61)] # G. C. Greubel, Aug 24 2023

A004926 a(n) = floor(n*phi^11), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 199, 398, 597, 796, 995, 1194, 1393, 1592, 1791, 1990, 2189, 2388, 2587, 2786, 2985, 3184, 3383, 3582, 3781, 3980, 4179, 4378, 4577, 4776, 4975, 5174, 5373, 5572, 5771, 5970, 6169, 6368, 6567, 6766
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((199+89*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Aug 27 2023
    
  • Mathematica
    Floor[GoldenRatio^(11)*Range[0, 60]] (* G. C. Greubel, Aug 27 2023 *)
  • SageMath
    [floor(golden_ratio^(11)*n) for n in range(61)] # G. C. Greubel, Aug 27 2023

A004928 a(n) = floor(n*phi^13), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 521, 1042, 1563, 2084, 2605, 3126, 3647, 4168, 4689, 5210, 5731, 6252, 6773, 7294, 7815, 8336, 8857, 9378, 9899, 10420, 10941, 11462, 11983, 12504, 13025, 13546, 14067, 14588, 15109, 15630, 16151
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((521+233*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Sep 05 2023
    
  • Mathematica
    Floor[GoldenRatio^(13)*Range[0, 60]] (* G. C. Greubel, Sep 05 2023 *)
  • SageMath
    [floor(golden_ratio^(13)*n) for n in range(61)] # G. C. Greubel, Sep 05 2023

A004930 a(n) = floor(n*phi^15), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 1364, 2728, 4092, 5456, 6820, 8184, 9548, 10912, 12276, 13640, 15004, 16368, 17732, 19096, 20460, 21824, 23188, 24552, 25916, 27280, 28644, 30008, 31372, 32736, 34100, 35464, 36828, 38192
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((682+305*Sqrt(5))*n): n in [0..60]]; // G. C. Greubel, Sep 05 2023
    
  • Mathematica
    Floor[GoldenRatio^(15)*Range[0, 60]] (* G. C. Greubel, Sep 05 2023 *)
  • SageMath
    [floor(golden_ratio^(15)*n) for n in range(61)] # G. C. Greubel, Sep 05 2023

A004932 a(n) = floor(n*phi^17), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 3571, 7142, 10713, 14284, 17855, 21426, 24997, 28568, 32139, 35710, 39281, 42852, 46423, 49994, 53565, 57136, 60707, 64278, 67849, 71420, 74991, 78562, 82133, 85704, 89275, 92846, 96417
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((3571+1597*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    Floor[GoldenRatio^(17)*Range[0, 60]] (* G. C. Greubel, Sep 11 2023 *)
  • SageMath
    [floor(golden_ratio^(17)*n) for n in range(61)] # G. C. Greubel, Sep 11 2023
Showing 1-10 of 1787 results. Next