cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 296 results. Next

A194055 Natural fractal sequence of A000071 (Fibonacci numbers minus 1).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
Offset: 1

Views

Author

Clark Kimberling, Aug 13 2011

Keywords

Comments

See A194029 for definitions of natural fractal sequence and natural interspersion.

Crossrefs

Programs

  • Mathematica
    z = 50;
    c[k_] := -1 + Fibonacci[k + 2]
    c = Table[c[k], {k, 1, z}] (* A000071, F(n+2)-1 *)
    f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
    f = Table[f[n], {n, 1, 300}]   (* A194055 *)
    r[n_] := Flatten[Position[f, n]]
    t[n_, k_] := r[n][[k]]
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
    p = Flatten[Table[t[k, n - k + 1], {n, 1, 11}, {k, 1, n}]] (* A194056 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]]  (* A194057 *)

A202876 Symmetric matrix based on A000071, by antidiagonals.

Original entry on oeis.org

1, 2, 2, 4, 5, 4, 7, 10, 10, 7, 12, 18, 21, 18, 12, 20, 31, 38, 38, 31, 20, 33, 52, 66, 70, 66, 52, 33, 54, 86, 111, 122, 122, 111, 86, 54, 88, 141, 184, 206, 214, 206, 184, 141, 88, 143, 230, 302, 342, 362, 362, 342, 302, 230, 143, 232, 374, 493, 562, 602
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let s=A000071 (Fibonacci numbers -1), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202876 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202877 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....2....4....7....12....20
2....5....10...18...31....52
4....10...21...38...66....111
7....18...38...70...122...206
12...31...66...122..214...362
		

Crossrefs

Programs

  • Mathematica
    s[k_] := -1 + Fibonacci[k + 2];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001924 *)
    Table[m[1, j], {j, 1, 12}]     (* A000071 *)
    Table[m[j, j], {j, 1, 12}]     (* A202462 *)

A194056 Natural interspersion of A000071(Fibonacci numbers minus 1), a rectangular array, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 11, 20, 21, 22, 23, 16, 17, 33, 34, 35, 36, 24, 25, 18, 54, 55, 56, 57, 37, 38, 26, 19, 88, 89, 90, 91, 58, 59, 39, 27, 28, 143, 144, 145, 146, 92, 93, 60, 40, 41, 29, 232, 233, 234, 235, 147, 148, 94, 61, 62, 42, 30
Offset: 1

Views

Author

Clark Kimberling, Aug 13 2011

Keywords

Comments

See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194056 is a permutation of the positive integers; its inverse is A194057.

Examples

			Northwest corner:
1...2...4...7...12
3...5...8...13..21
6...9...14..22..35
10..15..23..36..57
11..16..24..37..58
		

Crossrefs

Programs

  • Mathematica
    z = 50;
    c[k_] := -1 + Fibonacci[k + 2]
    c = Table[c[k], {k, 1, z}] (* A000071, F(n+2)-1 *)
    f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
    f = Table[f[n], {n, 1, 300}]   (* A194055 *)
    r[n_] := Flatten[Position[f, n]]
    t[n_, k_] := r[n][[k]]
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
    p = Flatten[Table[t[k, n - k + 1], {n, 1, 11}, {k, 1, n}]] (* A194056 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]]  (* A194057 *)

A226649 Fibonacci shuffles: a(2n) = A000071(n) and a(2n+1) = A001611(n+2).

Original entry on oeis.org

0, 2, 0, 3, 1, 4, 2, 6, 4, 9, 7, 14, 12, 22, 20, 35, 33, 56, 54, 90, 88, 145, 143, 234, 232, 378, 376, 611, 609, 988, 986, 1598, 1596, 2585, 2583, 4182, 4180, 6766, 6764, 10947, 10945, 17712, 17710, 28658, 28656, 46369, 46367, 75026, 75024, 121394, 121392, 196419, 196417, 317812, 317810
Offset: 0

Views

Author

V. T. Jayabalaji, Jun 14 2013

Keywords

Comments

a(2*n+1) = a(2*n) + A157725(n); a(2*n) = a(2*n-1) - 2 for n > 0. - Reinhard Zumkeller, Jul 30 2013

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a226649 n = a226649_list !! n
    a226649_list = concat $ transpose [a000071_list, drop 2 a001611_list]
    -- Reinhard Zumkeller, Jul 30 2013
  • Mathematica
    LinearRecurrence[{-1,1,1,1,1},{0,2,0,3,1},60] (* Harvey P. Dale, Sep 12 2018 *)

Formula

G.f. -x*(2+x^2+2*x^3+2*x) / ( (1+x)*(x^4+x^2-1) ). - R. J. Mathar, Jul 15 2013
a(n) + a(n+1) = A096748(n+2). - R. J. Mathar, Jul 15 2013
a(2n-1) - 1 = a(2n) + 1 = fib(n+1) = A000045(n+1) for n > 0. - T. D. Noe, Jul 23 2013

A263161 Positive values of n such that A000071(n+2) is divisible by A000217(n).

Original entry on oeis.org

1, 240, 600, 768, 1008, 1200, 1320, 1800, 2160, 2688, 2736, 3000, 3360, 3888, 4800, 5280, 5520, 6120, 6479, 6480, 6720, 6840, 7320, 7680, 8208, 8640, 9000, 9600, 9720, 10368, 11160, 11663, 12240, 12288, 13200, 13248, 13440, 13680, 14400, 15120, 15360, 15456, 16560, 18048
Offset: 1

Views

Author

Altug Alkan, Oct 11 2015

Keywords

Comments

Interestingly, the minimum value of a(n) - a(n-1) is 1. Is there a maximum value of a(n) - a(n-1)?
From Robert Israel, Oct 19 2015: (Start)
n is in the sequence if either n is odd and A001175(n) and A001175((n+1)/2) both divide n+1, or n is even and A001175(n/2) and A001175(n+1) both divide n.
Most of the terms of the sequence appear to fall in these categories. The first two that do not are 15456 and 41640.
In particular, if n = 2^j * 3^k * 5^m with j >= 4, k >= 1 and m >= 1, and n+1 is prime, then n is in the sequence. There are believed to be infinitely many numbers of this form. The first few are 240, 1200, 2160, 4800, 6480, 7680, 8640, 9600, 14400, 15360. (End)

Examples

			For n = 1, A000071(1+2) = 1 is divisible by A000217(1) = 1.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000] | IsDivisibleBy(Fibonacci(n+2)-1, n*(n+1) div 2)]; // Bruno Berselli, Oct 19 2015
  • Maple
    fmod:= proc(a, b) local A, t;
      uses LinearAlgebra[Modular];
      if b < 4295022903 then t:= integer[8] else t:= integer fi;
      A:= Mod(b, <<1, 1>|<1, 0>>, t);
      MatrixPower(b, A, a)[1, 2];
    end proc:
    filter:= n -> (fmod(n+2, n*(n+1)/2) = 1):
    filter(1):= true:
    select(filter, [$1..10^5]); # Robert Israel, Oct 19 2015
  • Mathematica
    fQ[n_] := Mod[Fibonacci[n + 2] - 1, n (n + 1)/2] == 0; Select[Range@20000, fQ] (* Bruno Berselli, Oct 19 2015 - after Robert G. Wilson v in A263225 *)
  • PARI
    for(n=1, 20000, if((fibonacci(n+2)-1) % (n*(n+1)/2) == 0, print1(n", ")));
    
  • PARI
    is(n)=((Mod([1,1;1,0],n*(n+1)/2))^(n+2))[1,2]==1 \\ Charles R Greathouse IV, Oct 19 2015
    

A129705 Triangle T(n,m) = A000071(n+2)-m*(m+1)/2 read by rows.

Original entry on oeis.org

0, 1, 0, 2, 1, -1, 4, 3, 1, -2, 7, 6, 4, 1, -3, 12, 11, 9, 6, 2, -3, 20, 19, 17, 14, 10, 5, -1, 33, 32, 30, 27, 23, 18, 12, 5, 54, 53, 51, 48, 44, 39, 33, 26, 18, 88, 87, 85, 82, 78, 73, 67, 60, 52, 43, 143, 142, 140, 137, 133, 128, 122, 115, 107, 98, 88
Offset: 0

Views

Author

Roger L. Bagula, Jun 08 2007

Keywords

Comments

The row sums are 0, 1, 2, 6, 15, 37, 84, 180, 366, 715, 1353, 2498, 4524 = (n+1)*(A000071(n+2) -(n+2)*n/6). - R. J. Mathar, Sep 09 2011

Examples

			0;
1, 0;
2, 1, -1;
4, 3, 1, -2;
7, 6, 4, 1, -3;
12, 11, 9, 6, 2, -3;
20, 19, 17, 14, 10, 5, -1;
33, 32, 30, 27, 23, 18, 12, 5;
		

Crossrefs

Cf. A000045.

Programs

  • Maple
    A000071 := proc(n) if n = 0 then 0; else combinat[fibonacci](n)-1 ; end if; end proc:
    A129705 := proc(n,m) A000071(n+2)-m*(m+1)/2 ; end proc: # R. J. Mathar, Sep 09 2011
  • Mathematica
    fib[n_Integer?Positive] := fib[n] = fib[n - 1] + fib[n - 2]; fib[0] = 0; fib[1] = fib[2] = 1; t[n_, m_] = Sum[fib[i], {i, 0, n}] - Sum[i, {i, 0, m}]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]

Formula

t(n,m) = sum_{i=0..n} A000045(i) - sum_{i=0..m} i, 0<=m<=n.

A138859 Smallest prime factor of Fibonacci(3n)-1, i.e., A020639(A000071(3n)).

Original entry on oeis.org

7, 3, 11, 3, 3, 5, 199, 13, 13, 3, 37, 3, 3, 89, 5, 11, 7, 3, 59, 3, 3, 11, 11, 37, 37, 3, 370248451, 3, 3, 139, 13, 5, 5, 3, 5, 3, 3, 59, 709, 557, 127, 3, 11, 3, 3, 5, 9375829, 73, 7, 3, 29, 3, 3, 2789, 5, 11, 47, 3, 13, 3, 3, 11, 11, 13, 7, 3, 809, 3, 3, 953, 47927441, 5, 5
Offset: 2

Views

Author

M. F. Hasler, Apr 05 2008

Keywords

Comments

F(n)-1 is even if n is not a multiple of 3.

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Fibonacci[3n]-1][[1,1]],{n,2,80}] (* Harvey P. Dale, Aug 08 2017 *)
  • PARI
    A138859(n)=factor(fibonacci(3*n)-1)[1,1] /* A138859 is defined only for n>1 ! */

Formula

a(n) = A020639(A000071(3n)).

A140992 a(0) = 0, a(1) = 1; for n > 1, a(n) = a(n-2) + a(n-1) + A000071(n+1).

Original entry on oeis.org

0, 1, 2, 5, 11, 23, 46, 89, 168, 311, 567, 1021, 1820, 3217, 5646, 9849, 17091, 29523, 50794, 87081, 148820, 253611, 431087, 731065, 1237176, 2089633, 3523226, 5930669, 9968123, 16730831, 28045222, 46954361, 78524160, 131181407
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 08 2008

Keywords

Examples

			If n = 4, then a(4) = a(4-2) + a(4-1) + A000071(4+1) = a(2) + a(3) + A000071(5) = 2 + 5 + 4 = 11.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-1,-3,1,1},{0,1,2,5,11},40] (* Harvey P. Dale, Jun 12 2014 *)

Formula

From R. J. Mathar, Apr 27 2010: (Start)
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
G.f.: -x*(1 - x + x^3) / ( (x - 1)*(x^2 + x - 1)^2 ). (End)
a(n) = A140998(n+1, k = 2) = A140993(n+2, n) for n >= 1. - Petros Hadjicostas, Jun 10 2019

Extensions

Corrected (5980669 replaced by 5930669) by R. J. Mathar, Apr 27 2010

A158950 Triangle read by rows, A158948 * (an infinite lower triangular matrix with A000071 prefaced with a 1 as the right border; and the rest zeros).

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 1, 0, 4, 3, 0, 2, 0, 7, 3, 1, 0, 4, 0, 12, 4, 0, 2, 0, 7, 0, 20, 4, 1, 0, 4, 0, 12, 0, 33, 5, 0, 2, 0, 7, 0, 20, 0, 54, 5, 1, 0, 4, 0, 12, 0, 33, 0, 88, 6, 0, 2, 0, 7, 0, 20, 0, 54, 0, 143
Offset: 1

Views

Author

Gary W. Adamson, Mar 31 2009

Keywords

Comments

Row sums = A000071 starting with nonzero terms: (1, 2, 4, 7, 12,...) As a property of eigentriangles, sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
2, 0, 2;
2, 1, 0, 4;
3, 0, 2, 0, 7;
3, 1, 0, 4, 0, 12;
4, 0, 2, 0, 7, 0, 20;
4, 1, 0, 4, 0, 12, 0, 33;
5, 0, 2, 0, 7, 0, 20, 0, 54;
5, 1, 0, 4, 0, 12, 0, 33, 0, 88;
6, 0, 2, 0, 7, 0, 20, 0, 54, 0, 143;
6, 1, 0, 4, 0, 12, 0, 33, 0, 88, 0, 232;
7, 0, 2, 0, 7, 0, 20, 0, 54, 0, 143, 0, 376;
7, 1, 0, 4, 0, 12, 0, 33, 0, 88, 0, 232, 0, 609;
...
Row 4 = (2, 1, 0, 4) = termwise products of (2, 1, 0, 1) and (1, 1, 2, 4);
where (2, 1, 0, 1) = row 4 of triangle A158948, and (1, 1, 2, 4) = the 3 nonzero terms of A000071 prefaced with a 1.
		

Crossrefs

Formula

Triangle read by rows, A158948 * M; where M = (an infinite lower triangular matrix with A000071 prefaced with a 1 as the right border, and the rest zeros). M = (1; 0,1; 0,0,2; 0,0,0,4; 0,0,0,7;...).

A263537 Integers k such that A098531(k) is divisible by A000071(k+2).

Original entry on oeis.org

1, 2, 13, 25, 31, 43, 55, 61, 73, 85, 91, 103, 115, 121, 133, 145, 151, 163, 175, 181, 193, 205, 211, 223, 235, 241, 253, 265, 271, 283, 295, 301, 313, 325, 331, 343, 355, 361, 373, 385, 391, 403, 415, 421, 433, 445, 451, 463, 475, 481, 493, 505, 511, 523, 535, 541, 553
Offset: 1

Views

Author

Altug Alkan, Oct 20 2015

Keywords

Comments

Sequence is interesting because of the values of a(n) - a(n-1) that are 12 or 6 for n > 3.
a(2) = 2 is the only even term.

Examples

			a(1) = 1 because 1^5 mod 1 = 0.
a(2) = 2 because (1^5 + 1^5) mod (1 + 1) = 0.
		

Crossrefs

Programs

  • Magma
    I:=[1,2,13,25,31,43]; [n le 6 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    lim = 560; s = Accumulate[Fibonacci[Range@lim]^5]; t = Fibonacci@ Range[2 lim] - 1; Select[Range@ lim, Divisible[s[[#]], t[[# + 2]]] &] (* Michael De Vlieger, Nov 19 2015, after Harvey P. Dale at A098531 and A000071 *)
  • PARI
    for(n=1, 1e3, if(sum(k=1, n, fibonacci(k)^5) % sum(k=1, n, fibonacci(k)) == 0, print1(n", ")));
    
  • PARI
    Vec(x*(x^5+5*x^4+11*x^3+11*x^2+x+1)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 20 2015
    

Formula

From Colin Barker, Oct 20 2015: (Start)
a(n) = a(n-1)+a(n-3)-a(n-4) for n>6.
G.f.: x*(x^5+5*x^4+11*x^3+11*x^2+x+1) / ((x-1)^2*(x^2+x+1)).
(End)
Showing 1-10 of 296 results. Next