cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: V. T. Jayabalaji

V. T. Jayabalaji's wiki page.

V. T. Jayabalaji has authored 3 sequences.

A226649 Fibonacci shuffles: a(2n) = A000071(n) and a(2n+1) = A001611(n+2).

Original entry on oeis.org

0, 2, 0, 3, 1, 4, 2, 6, 4, 9, 7, 14, 12, 22, 20, 35, 33, 56, 54, 90, 88, 145, 143, 234, 232, 378, 376, 611, 609, 988, 986, 1598, 1596, 2585, 2583, 4182, 4180, 6766, 6764, 10947, 10945, 17712, 17710, 28658, 28656, 46369, 46367, 75026, 75024, 121394, 121392, 196419, 196417, 317812, 317810
Offset: 0

Author

V. T. Jayabalaji, Jun 14 2013

Keywords

Comments

a(2*n+1) = a(2*n) + A157725(n); a(2*n) = a(2*n-1) - 2 for n > 0. - Reinhard Zumkeller, Jul 30 2013

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a226649 n = a226649_list !! n
    a226649_list = concat $ transpose [a000071_list, drop 2 a001611_list]
    -- Reinhard Zumkeller, Jul 30 2013
  • Mathematica
    LinearRecurrence[{-1,1,1,1,1},{0,2,0,3,1},60] (* Harvey P. Dale, Sep 12 2018 *)

Formula

G.f. -x*(2+x^2+2*x^3+2*x) / ( (1+x)*(x^4+x^2-1) ). - R. J. Mathar, Jul 15 2013
a(n) + a(n+1) = A096748(n+2). - R. J. Mathar, Jul 15 2013
a(2n-1) - 1 = a(2n) + 1 = fib(n+1) = A000045(n+1) for n > 0. - T. D. Noe, Jul 23 2013

A227393 a(n) = concatenation of first 3n terms of A033627.

Original entry on oeis.org

1, 124, 12471013, 12471013161922, 12471013161922252831, 124710131619222252831343740, 124710131619222252831343740434649, 124710131619222252831343740434649525558
Offset: 1

Author

V. T. Jayabalaji, Jul 15 2013

Keywords

Comments

All entries are == 1 (mod 3). V. T. Jayabalaji, Jul 13 2013

Examples

			124 is the concatenation of 1,2 and 4.
12471013 is the concatenation of 1, 2, 4, 7 10 and 13.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Jul 16 2013

A226538 a(2t) = a(2t-1) + 1, a(2t+1) = a(2t) + a(2t-2) for t >= 1, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 19, 20, 32, 33, 53, 54, 87, 88, 142, 143, 231, 232, 375, 376, 608, 609, 985, 986, 1595, 1596, 2582, 2583, 4179, 4180, 6763, 6764, 10944, 10945, 17709, 17710, 28655, 28656, 46366, 46367, 75023, 75024, 121391, 121392, 196416, 196417
Offset: 0

Author

V. T. Jayabalaji, Jun 10 2013

Keywords

Programs

  • Haskell
    a226538 n = a226538_list !! n
    a226538_list = concat $ transpose [drop 2 a000071_list, tail a001911_list]
    -- Reinhard Zumkeller, Jun 18 2013
  • Maple
    f:= proc(n) option remember;
          if n <= 1 then 1
        elif n mod 2 = 0 then f(n-1)+1
        else f(n-1)+f(n-3)
          fi
        end:
    t21:=[seq(f(n),n=0..60)];
  • Mathematica
    LinearRecurrence[{0, 2, 0, 0, 0, -1}, {1, 1, 2, 3, 4, 6}, 50] (* Jean-François Alcover, Feb 13 2018 *)

Formula

a(2n) = A000071(n+3), a(2n+1) = A001911(n+1). - Philippe Deléham, Jun 18 2013
G.f.: (1+x+x^3)/((1-x)*(1+x)*(1-x^2-x^4)). - Philippe Deléham, Jun 18 2013
a(n) = a(n-1) + a(n-3)*(1-(-1)^n)/2 + (1+(-1)^n)/2. - Paolo P. Lava, Jun 27 2013

Extensions

Edited by N. J. A. Sloane, Jun 18 2013