cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253447 Indices of centered octagonal numbers (A016754) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 15, 435, 13021, 390181, 11692395, 350381655, 10499757241, 314642335561, 9428770309575, 282548466951675, 8467025238240661, 253728208680268141, 7603379235169803555, 227847648846413838495, 6827826086157245351281, 204606934935870946699921
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers y in the solutions to 7*x^2 - 8*y^2 - 7*x + 8*y = 0, the corresponding values of x being A253446.

Examples

			15 is in the sequence because the 15th centered octagonal number is 841, which is also the 16th centered heptagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-30*x+1)) + O(x^100))

Formula

a(n) = 31*a(n-1)-31*a(n-2)+a(n-3).
G.f.: -x*(x^2-16*x+1) / ((x-1)*(x^2-30*x+1)).
a(n) = (8+(4+sqrt(14))*(15+4*sqrt(14))^(-n)-(-4+sqrt(14))*(15+4*sqrt(14))^n)/16. - Colin Barker, Mar 03 2016

A253514 Centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 841, 755161, 678133681, 608963290321, 546848356574521, 491069215240629481, 440979608437728699361, 395999197307865131396641, 355606838202854450265484201, 319334544706965988473273415801, 286762065540017254794549261905041
Offset: 1

Views

Author

Colin Barker, Jan 03 2015

Keywords

Examples

			841 is in the sequence because it is the 16th centered heptagonal number and the 15th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-58*x+1)/((x-1)*(x^2-898*x+1)) + O(x^100))

Formula

a(n) = 899*a(n-1)-899*a(n-2)+a(n-3).
G.f.: -x*(x^2-58*x+1) / ((x-1)*(x^2-898*x+1)).
From Peter Bala, Apr 15 2025; (Start)
a(n) = (1/64)*(-4 + sqrt(14))^2*(15 + 4*sqrt(14) + (449 + 120*sqrt(14))^n)^2 *(449 + 120*sqrt(14))^(-n).
a(-n) = a(n+1).
a(n) = (1/16) * (1 - T(2*n+1, -15)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001110.
a(n) = A157877(n)^2 = 1 + 7*A157879(n).
a(2) divides a(3*n+2); a(3) divides a(5*n+3); a(4) divides a(7*n+4); a(5) divides a(9*n+5). In general, a(k) divides a((2*k-1)*n + k). (End)
Showing 1-2 of 2 results.