cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253446 Indices of centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 16, 465, 13920, 417121, 12499696, 374573745, 11224712640, 336366805441, 10079779450576, 302057016711825, 9051630721904160, 271246864640412961, 8128354308490484656, 243579382390074126705, 7299253117393733316480, 218734014139421925367681
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers x in the solutions to 7*x^2 - 8*y^2 - 7*x + 8*y = 0, the corresponding values of y being A253447.

Examples

			16 is in the sequence because the 16th centered heptagonal number is 841, which is also the 15th centered octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{31,-31,1},{1,16,465},20] (* Harvey P. Dale, Oct 04 2023 *)
  • PARI
    Vec(x*(15*x-1)/((x-1)*(x^2-30*x+1)) + O(x^100))

Formula

a(n) = 31*a(n-1)-31*a(n-2)+a(n-3).
G.f.: x*(15*x-1) / ((x-1)*(x^2-30*x+1)).
a(n) = sqrt((-2-(15-4*sqrt(14))^n-(15+4*sqrt(14))^n)*(2-(15-4*sqrt(14))^(1+n)-(15+4*sqrt(14))^(1+n)))/(4*sqrt(7)). - Gerry Martens, Jun 04 2015

A253514 Centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 841, 755161, 678133681, 608963290321, 546848356574521, 491069215240629481, 440979608437728699361, 395999197307865131396641, 355606838202854450265484201, 319334544706965988473273415801, 286762065540017254794549261905041
Offset: 1

Views

Author

Colin Barker, Jan 03 2015

Keywords

Examples

			841 is in the sequence because it is the 16th centered heptagonal number and the 15th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-58*x+1)/((x-1)*(x^2-898*x+1)) + O(x^100))

Formula

a(n) = 899*a(n-1)-899*a(n-2)+a(n-3).
G.f.: -x*(x^2-58*x+1) / ((x-1)*(x^2-898*x+1)).
From Peter Bala, Apr 15 2025; (Start)
a(n) = (1/64)*(-4 + sqrt(14))^2*(15 + 4*sqrt(14) + (449 + 120*sqrt(14))^n)^2 *(449 + 120*sqrt(14))^(-n).
a(-n) = a(n+1).
a(n) = (1/16) * (1 - T(2*n+1, -15)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001110.
a(n) = A157877(n)^2 = 1 + 7*A157879(n).
a(2) divides a(3*n+2); a(3) divides a(5*n+3); a(4) divides a(7*n+4); a(5) divides a(9*n+5). In general, a(k) divides a((2*k-1)*n + k). (End)
Showing 1-2 of 2 results.