cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253411 Indices of centered octagonal numbers (A016754) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 76, 646, 108871, 930811, 156991186, 1342228096, 226381180621, 1935491982901, 326441505463576, 2790978097114426, 470728424497295251, 4024588480547018671, 678790061683594287646, 5803453797970703808436, 978814798219318465489561, 8368576352085274344745321
Offset: 1

Views

Author

Colin Barker, Dec 31 2014

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of x being A253410.

Examples

			76 is in the sequence because the 76th centered octagonal number is 22801, which is also the 96th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1442,-1442,-1,1},{1,76,646,108871,930811},20] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    Vec(-x*(x^4+75*x^3-872*x^2+75*x+1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))

Formula

a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(x^4 + 75*x^3 - 872*x^2 + 75*x + 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).

A253579 Centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 22801, 1666681, 47411143081, 3465632747641, 98584929298781641, 7206305041398228481, 204993755756525779060081, 14984516863488437537571601, 426256225957302372068628976801, 31158234954289838149958560780201, 886340998518823181233611960679431001
Offset: 1

Views

Author

Colin Barker, Jan 04 2015

Keywords

Examples

			22801 is in the sequence because it is the 96th centered pentagonal number and the 76th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+22800*x^3-435482*x^2+22800*x+1)/((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+2079362*a(n-2)-2079362*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+22800*x^3-435482*x^2+22800*x+1) / ((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)).

A253442 Expansion of x * (96 - 816*x) / ((1 - x) * (1 - 1442*x + x^2)) in powers of x.

Original entry on oeis.org

96, 137712, 198579888, 286352060064, 412919472031680, 595429592317621776, 858609059202538568592, 1238113667940468298287168, 1785359050561096083591526944, 2574486512795432612070683565360, 3712407766091963265509842109721456
Offset: 1

Views

Author

Michael Somos, Dec 31 2014

Keywords

Comments

The continued fraction convergents of sqrt(10) are 3/1, 19/6, 117/37, 721/228, ...

Examples

			G.f. = 96*x + 137712*x^2 + 198579888*x^3 + 286352060064*x^4 + ...
		

Crossrefs

Cf. A253410.

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(48*x*(2 - 17*x)/((1 - x)*(1 - 1442*x + x^2)))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    CoefficientList[Series[48*x*(2-17*x)/((1-x)*(1-1442*x+x^2)), {x,0,30}], x] (* G. C. Greubel, Aug 03 2018 *)
    LinearRecurrence[{1443,-1443,1},{96,137712,198579888},20] (* Harvey P. Dale, Aug 23 2020 *)
  • PARI
    {a(n) = my(t=(721 - 228*quadgen(40))^n); (1 - real(t) - 4*imag(t)) / 2};
    
  • PARI
    Vec(48*x*(2 - 17*x) / ((1 - x)*(1 - 1442*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 24 2017
    

Formula

G.f.: x * (96 - 816*x) / ((1 - x) * (1 - 1442*x + x^2)).
a(n) = A253410(2*n) for all n in Z.
1 - a(-n) = A253410(2*n + 1) for all n in Z.
From Colin Barker, Nov 24 2017: (Start)
a(n) = (1/2 - (5+2*sqrt(10))/20*(721+228*sqrt(10))^(-n) + (-1/4 + 1/sqrt(10))*(721+228*sqrt(10))^n).
a(n) = 1443*a(n-1) - 1443*a(n-2) + a(n-3) for n>3.
(End)
Showing 1-3 of 3 results.