cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253410 Indices of centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 96, 817, 137712, 1177393, 198579888, 1697799169, 286352060064, 2448225223585, 412919472031680, 3530339074609681, 595429592317621776, 5090746497361935697, 858609059202538568592, 7340852918856836664673, 1238113667940468298287168, 10585504818245061108522049
Offset: 1

Views

Author

Colin Barker, Dec 31 2014

Keywords

Comments

Also positive integers x in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of y being A253411.

Examples

			96 is in the sequence because the 96th centered pentagonal number is 22801, which is also the 76th centered octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1442,-1442,-1,1},{1,96,817,137712,1177393},20] (* Harvey P. Dale, Jul 12 2021 *)
  • PARI
    Vec(x*(95*x^3+721*x^2-95*x-1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))

Formula

a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(95*x^3 + 721*x^2 - 95*x - 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).

A253579 Centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 22801, 1666681, 47411143081, 3465632747641, 98584929298781641, 7206305041398228481, 204993755756525779060081, 14984516863488437537571601, 426256225957302372068628976801, 31158234954289838149958560780201, 886340998518823181233611960679431001
Offset: 1

Views

Author

Colin Barker, Jan 04 2015

Keywords

Examples

			22801 is in the sequence because it is the 96th centered pentagonal number and the 76th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+22800*x^3-435482*x^2+22800*x+1)/((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+2079362*a(n-2)-2079362*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+22800*x^3-435482*x^2+22800*x+1) / ((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)).
Showing 1-2 of 2 results.