cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A226008 a(0) = 0; for n>0, a(n) = denominator(1/4 - 4/n^2).

Original entry on oeis.org

0, 4, 4, 36, 1, 100, 36, 196, 16, 324, 100, 484, 9, 676, 196, 900, 64, 1156, 324, 1444, 25, 1764, 484, 2116, 144, 2500, 676, 2916, 49, 3364, 900, 3844, 256, 4356, 1156, 4900, 81, 5476, 1444, 6084, 400, 6724, 1764, 7396, 121, 8100
Offset: 0

Views

Author

Paul Curtz, May 22 2013

Keywords

Comments

Numerators are in A225948.
Repeated terms of A016826 are in the positions 1, 2, 3, 6, 5, 10, ... (A043547).

Examples

			a(0) = (-1+1)^2 = 0, a(1) = (-3+5)^2 = 4, a(2) = (-1+3)^2 = 4.
		

Crossrefs

Cf. A225975 (associated square roots).

Programs

  • Magma
    [0] cat [Denominator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 23 2013
  • Mathematica
    Join[{0},Table[Denominator[1/4 - 4/n^2], {n, 49}]] (* Alonso del Arte, May 22 2013 *)

Formula

a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(8n) = A016802(n), a(8n+4) = A016754(n).
a(4n) = A154615(n).
a(4n+1) = A017090(n).
a(4n+2) = a(2n+1) = A016826(n); a(2n) = A061038(n).
a(4n+3) = A017138(n).
From Bruno Berselli, May 23 2013: (Start)
G.f.: x*(4 +4*x +36*x^2 +x^3 +100*x^4 +36*x^5 +196*x^6 +16*x^7 +312*x^8 +88*x^9 +376*x^10 +6*x^11 +376*x^12 +88*x^13 +312*x^14 +16*x^15 +196*x^16 +36*x^17 +100*x^18 +x^19 +36*x^20 +4*x^21 +4*x^22)/(1-x^8)^3.
a(n) = n^2*(6*cos(3*Pi*n/4)+6*cos(Pi*n/4)-54*cos(Pi*n/2)-219*(-1)^n+293)/128.
a(n+9) = a(n+1)*((n+9)/(n+1))^2. (End)
Sum_{n>=1} 1/a(n) = 19*Pi^2/96. - Amiram Eldar, Aug 14 2022

Extensions

Edited by Bruno Berselli, May 23 2013

A017139 a(n) = (8*n + 6)^3.

Original entry on oeis.org

216, 2744, 10648, 27000, 54872, 97336, 157464, 238328, 343000, 474552, 636056, 830584, 1061208, 1331000, 1643032, 2000376, 2406104, 2863288, 3375000, 3944312, 4574296, 5268024, 6028568, 6859000, 7762392, 8741816, 9800344, 10941048, 12167000, 13481272, 14886936
Offset: 0

Views

Author

Keywords

Comments

4*n + 3 = (8*n + 6) / 2 is never a square, as 3 is not a quadratic residue modulo 4. Using this, we can show that each term has an even square part and an even squarefree part, neither part being a power of 2. (Less than 2% of integers have this property - see A339245.) - Peter Munn, Dec 14 2020

Crossrefs

A000578, A016839, A017137 are used in a formula defining this sequence.
Subsequence of A339245.

Programs

Formula

From R. J. Mathar, Mar 22 2010: (Start)
G.f.: 8*(27 + 235*x + 121*x^2 + x^3)/(x-1)^4.
a(n) = 8*A016839(n). (End)
a(0)=216, a(1)=2744, a(2)=10648, a(3)=27000, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 11 2012
a(n) = A017137(n)^3 = A000578(A017137(n)). - Peter Munn, Dec 20 2020
Sum_{n>=0} 1/a(n) = 7*zeta(3)/128 - Pi^2/512. - Amiram Eldar, Apr 26 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 17 2010

A227168 a(n) = gcd(2*n, n*(n+1)/2)^2.

Original entry on oeis.org

1, 1, 36, 4, 25, 9, 196, 16, 81, 25, 484, 36, 169, 49, 900, 64, 289, 81, 1444, 100, 441, 121, 2116, 144, 625, 169, 2916, 196, 841, 225, 3844, 256, 1089, 289, 4900, 324, 1369, 361, 6084, 400
Offset: 1

Views

Author

Paul Curtz, Jul 03 2013

Keywords

Comments

a(n) is defined as A062828(n)^2 for n >= 1. If we extend the sequence to n=0 and negative n by use of the recurrence that relates a(n) to a(n+12), a(n+8) and a(n+4), we obtain a(0)=0, a(-1)=4 and a(-n) = A176743(n-2)^2 for n >= 2.
Define c(n) = a(n+2) - a(n-2) for c >= 0. Because a(n) is a shuffle of three interleaved 2nd-order polynomials, c(n) is a shuffle of three interleaved 1st-order polynomials: c(n) = 4* A062828(n)*(periodically repeated 1, 8, 1, 1).
The sequence a(n) is case p=0 of the family A062828(n)*A062828(n+p):
0, 1, 1, 36, 4, 25, 9, 196, ... = a(n).
0, 1, 6, 12, 10, 15, 42, 56, ... = A130658(n)*A000217(n) = A177002(n-1)*A064038(n+1).
0, 6, 2, 30, 6, 70, 12, 126, ... = 2*A198148(n)
0, 2, 5, 18, 28, 20, 27, 70, ... = A177002(n+2)*A160050(n+1) = A014695(n+2)*A000096(n).

Crossrefs

Programs

Formula

a(n) = A062828(n)^2.
a(4n) = (4*n+1)^2; a(2n+1) = (n+1)^2; a(4n+2) = 4*(4*n+3)^2.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) * (period 4: repeat 4, 1, 1, 4) = A061038(n).
A005565(n-3) = a(n+1) * A061037(n). - Corrected by R. J. Mathar, Jul 25 2013
a(n) = A130658(n-1)^2 * A181318(n). - Corrected by R. J. Mathar, Aug 01 2013
G.f.: -x*(1 + x + 36*x^2 + 4*x^3 + 22*x^4 + 6*x^5 + 88*x^6 + 4*x^7 + 9*x^8 + x^9 + 4*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Jul 20 2013
Sum_{n>=1} 1/a(n) = 47*Pi^2/192 + 3*G/8, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022
Showing 1-3 of 3 results.