cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jan Kristian Haugland

Jan Kristian Haugland's wiki page.

Jan Kristian Haugland has authored 19 sequences. Here are the ten most recent ones:

A346848 Number of conjugacy classes of the symplectic group Sp(2n, 2) over the field with 2 elements.

Original entry on oeis.org

1, 3, 11, 30, 81, 198, 477, 1089, 2451, 5358, 11567, 24537, 51577, 107205, 221378, 453900, 926395, 1882152, 3812232, 7699191, 15518112, 31220991, 62733296, 125911851, 252516626, 506082933, 1013780968, 2029989807, 4063678159, 8132877129, 16274093175
Offset: 0

Author

Jan Kristian Haugland, Aug 06 2021

Keywords

Comments

Sp(2n, 2) is isomorphic to the orthogonal group O(2n+1, 2) over the field with 2 elements, and is a simple and complete group for n>=3.

Examples

			a(2)=11, and Sp(4, 2) is isomorphic to the symmetric group S_6 which has 11 conjugacy classes.
		

Crossrefs

Discrete convolution of A070933 and A098613. A003923 gives the order of the group.

A308489 Number of 5-regular polyhedra with 2n nodes.

Original entry on oeis.org

1, 0, 1, 1, 6, 14, 96, 518, 3917, 29821, 240430, 1957382, 16166596
Offset: 6

Author

Jan Kristian Haugland, Jun 12 2019

Keywords

Comments

Number of simple 5-regular 3-connected planar graphs with 2n nodes.

Crossrefs

A308588 Number of 4-regular 3-connected planar graphs with n vertices having an Eulerian tour for which no two consecutive edges are incident with the same face.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 17, 40, 145, 355, 1264, 3931, 12999, 44727
Offset: 8

Author

Jan Kristian Haugland, Jun 09 2019

Keywords

Comments

Polyhedra formed by knot diagrams.

Crossrefs

Cf. A007022.

A144188 a(n)/n! is the probability of guessing "up/down" correctly through a deck of n cards marked 1, 2, ..., n, if one always makes the most probable guess.

Original entry on oeis.org

1, 1, 2, 5, 16, 62, 286, 1519, 9184, 62000, 463964, 3800684, 33911424, 326678010, 3385261194, 37492199549, 442541571936, 5539379635136, 73368335117584, 1024178393797764, 15041551052243448, 231665680071392900, 3736363255881557460, 62935656581952683960
Offset: 0

Author

Jan Kristian Haugland, Sep 13 2008

Keywords

Formula

Let f(0, 0) = 1 and f(n, k) = max{f(n - 1, 0) + ... + f(n - 1, k - 1), f(n - 1, k) + ... + f(n - 1, n - 1)} for 0 <= k <= n. Then a(n) = f(n, 0).

A130695 Number of ways to write n as (a+1)(b+1)(c+1) - abc with a, b, c nonnegative integers.

Original entry on oeis.org

1, 3, 3, 6, 3, 9, 4, 9, 6, 12, 3, 15, 6, 12, 9, 15, 3, 21, 7, 15, 9, 18, 6, 24, 9, 15, 9, 24, 6, 30, 6, 15, 15, 24, 9, 30, 7, 21, 12, 30, 3, 33, 15, 21, 15, 24, 6, 39, 12, 27, 12, 27, 9, 42, 12, 21, 15, 36, 6, 45, 13, 18, 21, 36, 12, 39, 6, 33, 15, 45, 9, 42, 12, 24, 24, 30, 9, 57, 18, 30
Offset: 1

Author

Jan Kristian Haugland, Jul 10 2007

Keywords

Examples

			a(7) = 4 because 7 = 7*1*1-6*0*0 = 1*7*1-0*6*0 = 1*1*7-0*0*6 = 2*2*2-1*1*1.
G.f. = x + 3*x^2 + 3*x^3 + 6*x^4 + 3*x^5 + 9*x^6 + 4*x^7 + 9*x^8 + 6*x^9 + ...
		

Crossrefs

Cf. A238872.

Programs

  • Mathematica
    f[{a_,b_,c_}]:=(a+1)(b+1)(c+1)-a*b*c; nn=80;Take[Transpose[Sort[Tally[f/@ Tuples[Range[0,nn],3]],#1[[1]]<#2[[1]]&]] [[2]],nn] (* Harvey P. Dale, Mar 05 2012 *)
    a[ n_] := Length @ FindInstance[ {x >= 0, y >= 0, z >= 0, x y + y z + z x + x + y + z + 1 == n}, {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 04 2015 *)
    a[ n_] := (2 + (-1)^n) Length @ FindInstance[ {1 <= y <= n, 1 <= x <= y, 1 <= z <= y, y^2 - (x^2 - x + z^2 - z) / 2 == n}, {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 04 2015 *)

Formula

a(2*n) = A238872(2*n) / 3 if n>0. a(2*n + 1) = A238872(2*n + 1). - Michael Somos, Jul 04 2015

A094777 Number of legal positions in Go played on an n X n grid (each group must have at least one liberty).

Original entry on oeis.org

1, 57, 12675, 24318165, 414295148741, 62567386502084877, 83677847847984287628595, 990966953618170260281935463385, 103919148791293834318983090438798793469, 96498428501909654589630887978835098088148177857, 793474866816582266820936671790189132321673383112185151899, 57774258489513238998237970307483999327287210756991189655942651331169, 37249792307686396442294904767024517674249157948208717533254799550970595875237705, 212667732900366224249789357650440598098805861083269127196623872213228196352455447575029701325
Offset: 1

Author

Jan Kristian Haugland, Jun 09 2004

Keywords

Comments

John Tromp wrote a small C program to compute the number for boards up to size 4 X 5, given in the rec.games.go posting below. Gunnar Farnebaeck (gunnar(AT)lysator.liu.se) wrote a pike script to compute the number by dynamic programming, which handles sizes up to 12 X 12 (available upon request).

Examples

			The illegal 2 X 2 positions are the 2^4 with no empty points and the 4*2 having a stone adjacent to 2 opponent stones that share a liberty. That leaves 3^4-16-8 = 57 legal positions.
		

Formula

3^(n*n) is a trivial upper bound.
Tromp & Farnebäck prove that a(n) = (1 + o(1)) * L^(n^2), and conjecture that a(n) ~ A * B^(2n) * L^(n^2) * (1 + O(n*p^n)) for some constants A, B, L, and p < 1. - Charles R Greathouse IV, Feb 08 2016

Extensions

More terms from John Tromp, Jan 27 2005
a(10)-a(13) from John Tromp, Jun 23 2005
a(14)-a(15) from John Tromp, Sep 01 2005
a(16) from John Tromp, Oct 06 2005
Michal Koucky should be credited for carrying most of the computational load for computing the n=14, 15 and 16 results with his file-based implementation.
a(17)-a(18) from John Tromp, Mar 08 2015
a(19) from John Tromp, Jan 21 2016

A066369 Number of subsets of {1, ..., n} with no four terms in arithmetic progression.

Original entry on oeis.org

1, 2, 4, 8, 15, 29, 56, 103, 192, 364, 668, 1222, 2233, 3987, 7138, 12903, 22601, 40200, 71583, 125184, 218693, 386543, 670989, 1164385, 2021678, 3462265, 5930954, 10189081, 17266616, 29654738, 50912618, 86017601, 145327544, 247555043, 415598432, 698015188
Offset: 0

Author

Jan Kristian Haugland, Dec 22 2001

Keywords

Examples

			a(5) = 29 because there are 32 subsets and three of them contain four terms in arithmetic progression: {1, 2, 3, 4}, {2, 3, 4, 5} and {1, 2, 3, 4, 5}.
		

Crossrefs

Programs

  • Python
    from sympy import subsets
    def noap4(n):
        avoid=list()
        for skip in range(1,(n+2)//3):
            for start in range (1,n+1-3*skip):
                avoid.append(set({start,start+skip,start+2*skip,start+3*skip}))
        s=list()
        for i in range(4):
            for smallset in subsets(range(1,n+1),i):
                s.append(smallset)
        for i in range(4,n+1):
            for temptuple in subsets(range(1,n+1),i):
                tempset=set(temptuple)
                status=True
                for avoidset in avoid:
                    if avoidset <= tempset:
                        status=False
                        break
                if status:
                    s.append(tempset)
        return s
    # Counts all such sets
    def a(n):
        return len(noap4(n)) # David Nacin, Mar 05 2012

Formula

a(n) = 2^n - A018789(n).

Extensions

a(31)-a(35) (using data in A018789) from Alois P. Heinz, Sep 08 2019

A066331 Number of fixed hexagonal polyominoes with n cells and tree-like structure.

Original entry on oeis.org

1, 3, 9, 29, 99, 348, 1260, 4644, 17382, 65822, 251655, 969819, 3762517, 14680890, 57567228, 226712655, 896252850, 3555116583, 14144563158
Offset: 1

Author

Jan Kristian Haugland, Jan 01 2002

Keywords

Crossrefs

Cf. A001207 (all polyhexes), A038142 (free tree-like).

Extensions

a(16)-a(19) from Sean A. Irvine, Oct 08 2023

A065068 Number of fixed polyominoes with n cells of which no four are equally spaced on a straight line.

Original entry on oeis.org

1, 2, 6, 17, 45, 114, 264, 545, 1061, 2070, 3990, 7275, 12556, 20824, 33584, 52753, 80560, 119274, 170168, 232700, 306472, 396580, 517300, 688736, 926816, 1241720, 1640968, 2130448, 2710356, 3383596, 4171788, 5120776, 6289760, 7747928, 9582196, 11908872, 14887792, 18732340, 23712492, 30141180, 38341172, 48622328, 61275752, 76578628, 94786504, 116132688, 140870564, 169379536, 202262720, 240326780, 284337040, 334532714, 389976092
Offset: 1

Author

Jan Kristian Haugland, Nov 07 2001

Keywords

Comments

a(142) = 36 is the final nonzero term of this sequence. - Jan Kristian Haugland, Apr 28 2020

Crossrefs

Cf. A001168.

Formula

a(n) = 0 for n >= 143. - Jan Kristian Haugland, Apr 28 2020

Extensions

a(32)-a(53) from Brendan Owen (brendan_owen(AT)yahoo.com), Mar 11 2002

A066158 Number of fixed polyominoes with n cells and tree-like structure.

Original entry on oeis.org

1, 2, 6, 18, 55, 174, 570, 1908, 6473, 22202, 76886, 268352, 942651, 3329608, 11817582, 42120340, 150682450, 540832274, 1946892842, 7027047848, 25424079339, 92185846608, 334925007128, 1219054432490, 4444545298879, 16229462702152, 59347661054364
Offset: 1

Author

Jan Kristian Haugland, Dec 13 2001

Keywords

Comments

Computed by a modified version of the program used for A065068.
Aleksandrowicz and Barequet (2011) confirm first 27 terms. - Gill Barequet, May 25 2011

References

  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • N. Madras, C. E. Soteros, S. G. Whittington, J. L. Martin, M. F. Sykes et al., The free energy of a collapsing branched polymer, J. Phys. A: Math. Gen. 23 (1990) 5327-5350.

Crossrefs

Cf. A001168 (fixed polyominoes), A019441 (coefficients of g.f. related to this sequence), A118356, A191094, A191095, A191096, A191097, A191098 (fixed tree-like polycubes in 3, 4, 5, 6, 7, and 8 dimensions, resp.).

Extensions

Added a(18) and a(19) from Madras et al. - R. J. Mathar, Apr 08 2006
Terms from a(20) on added by N. J. A. Sloane, Nov 05 2008, from the Jensen paper.