cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A102620 Number of legal Go positions on a 1 X n board (for which 3^n is a trivial upper bound).

Original entry on oeis.org

1, 5, 15, 41, 113, 313, 867, 2401, 6649, 18413, 50991, 141209, 391049, 1082929, 2998947, 8304961, 22998865, 63690581, 176377839, 488441801, 1352638145, 3745850473, 10373355075, 28726852897, 79553054089, 220305664445, 610090792143, 1689519766073, 4678774170521, 12956893537633, 35881426208451, 99366159258241, 275173945103905, 762037102261925, 2110303520940111
Offset: 1

Views

Author

John Tromp, Jan 31 2005

Keywords

Examples

			a(2)=5 because .. .O .S O. S. are the 5 legal 1 X 2 Go positions, while OO OS SO SS are all illegal, having stones without liberties.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-1,1},{1,5,15},40] (* Harvey P. Dale, Sep 16 2016 *)
  • Maxima
    makelist(sum((2^k)*(binomial(n+k+1,3*k+2)+2*binomial(n+k,3*k+2)+binomial(n+k-1,3*k+2)),k,0,(n-1)/2),n,0,24); /* Emanuele Munarini, Apr 17 2013 */
    
  • PARI
    Vec(x*(1+x)^2/((1-x)^3-2*x^2)+O(x^66)) \\ Joerg Arndt, Apr 17 2013

Formula

For n >= 4, a(n) = 3*a(n-1) - a(n-2) + a(n-3).
G.f.: x(1+x)^2/((1-x)^3-2x^2). - Josh Simmons (jsimmons10(AT)my.whitworth.edu), May 06 2010
a(n) = Sum_{k=0..floor((n-1)/2)} 2^k * (binomial(n+k+1,3*k+2) + 2*binomial(n+k,3*k+2) + binomial(n+k-1,3*k+2)). - Emanuele Munarini, Apr 17 2013

Extensions

More terms from Joerg Arndt, Apr 17 2013

A266278 Number of legal Go positions on a 2 X n board.

Original entry on oeis.org

5, 57, 489, 4125, 35117, 299681, 2557605, 21826045, 186255781, 1589441093, 13563736693, 115748216413, 987755062201, 8429158472781, 71931509371765, 613838505628281, 5238284505542721, 44701699729693429, 381468772192258129, 3255321946095461785, 27779786302899765081
Offset: 1

Views

Author

Felix Fröhlich, Dec 26 2015

Keywords

Examples

			For n = 1, the a(1) = 5 legal 2 X 1 boards are .. X. O. .X .O
		

Crossrefs

Programs

  • PARI
    Vec(x*(1 + x)^2*(5 - 3*x - 5*x^3 - x^4) / ((1 + x^2)*(1 - 10*x + 15*x^2 - 21*x^3 - 2*x^4 + x^5)) + O(x^40)) \\ Colin Barker, Jan 05 2018

Formula

a(n) = 10*a(n-1)-16*a(n-2)+31*a(n-3)-13*a(n-4)+20*a(n-5)+2*a(n-6)-a(n-7).
G.f.: x*(1 + x)^2*(5 - 3*x - 5*x^3 - x^4) / ((1 + x^2)*(1 - 10*x + 15*x^2 - 21*x^3 - 2*x^4 + x^5)). - Colin Barker, Jan 05 2018

Extensions

Corrected and edited by John Tromp, Jan 26 2016

A268113 Number of legal positions in Go played on an n X n+1 grid (each group must have at least one liberty).

Original entry on oeis.org

5, 489, 321689, 1840058693, 93332304864173, 41945191530093646965, 166931297609667912727898521, 5882748866432370655674372752123193, 1835738613899845421140262364853644706891109, 5072588588647327658457862518216696854885169490987149
Offset: 1

Views

Author

John Tromp, Jan 26 2016

Keywords

Comments

Upper bounded by 3^{n*(n+1)}.

Examples

			For n=1 the 5 legal 1x2 boards are .. X. O. .X .O
		

Crossrefs

Almost-square version of A094777.

A356049 Symmetric array read by antidiagonals: T(n,k) is the number of legal positions in Go on an n X k board.

Original entry on oeis.org

1, 5, 5, 15, 57, 15, 41, 489, 489, 41, 113, 4125, 12675, 4125, 113, 313, 35117, 321689, 321689, 35117, 313, 867, 299681, 8180343, 24318165, 8180343, 299681, 867, 2401, 2557605, 208144601, 1840058693, 1840058693, 208144601, 2557605, 2401
Offset: 1

Views

Author

Douglas Boffey, Jul 24 2022

Keywords

Comments

A Go position is a grid containing white and black stones with the condition that every orthogonally connected group of stones of a single color has liberties, i.e., is orthogonally adjacent to an empty cell.

Examples

			Array begins:
   1,   5,  15,  41, ...
   5,  57, 489, ...
  15, 489, ...
  41, ...
  ...
T(3,1) = 15 from
  ... ..w ..b .w. .ww  .b. .bb w.. w.w w.b  ww. b.. b.w b.b bb.
		

Crossrefs

Columns (or rows) give: A102620, A266278.
Main diagonal gives A094777.
This as triangle gives A356134.

A356134 Triangular array giving total number of legal Go positions on an n X k board.

Original entry on oeis.org

1, 5, 57, 15, 489, 12675, 41, 4125, 321689, 24318165, 113, 35117, 8180343, 1840058693, 414295148741, 313, 299681, 208144601, 139304759213, 93332304864173, 62567386502084877, 867, 2557605, 5296282323, 10546705714473, 21026744638200555, 41945191530093646965, 83677847847984287628595
Offset: 1

Views

Author

Douglas Boffey, Jul 27 2022

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    5,    57;
   15,   489,   12675;
   41,  4125,  321689,   24318165;
  113, 35117, 8180343, 1840058693, 414295148741;
  ...
		

Crossrefs

Columns give: A102620, A266278.
Main diagonal gives A094777.
A356049 gives the table by antidiagonals.

Extensions

a(27) corrected by Sidney Cadot, Jan 05 2023.

A269417 Number of Go games on n X n board with no repeating position and suicide allowed.

Original entry on oeis.org

1, 1, 386356909593
Offset: 0

Views

Author

John Tromp, Feb 25 2016

Keywords

Comments

I only chose starting offset 0 because the number of 3 X 3 games is unknown (and over a thousand digits).
a(n) is also the number of simple paths in the Go game graph starting at the empty position.
a(n) is upper bounded by n^{2*3^{n^2}}, as shown in Theorem 7 from the linked paper.

Examples

			a(1) = 1 since the only legal Go game on a 1 X 1 board is Black pass, White pass.
		

Crossrefs

Cf. A094777.

A275346 In Go, minimum total number of liberties player 1 (black) can have on a standard 19 X 19 board after n moves when no player passes a move, with no repeating game positions allowed.

Original entry on oeis.org

2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Felix Fröhlich, Jul 24 2016

Keywords

Comments

For many small n, a(n) = 0 when n is even and a(n) = 1 when n is odd, because a row of black stones can be played on the outer line of the board with a row of white stones running adjacent to the black stones, as in the following diagram:
B--B--W
|
B--W
|
B--W
|
B--W
|
o
What is the asymptotic behavior of this sequence?
Does a(n) exist for all n or does a constant c exist such that a(n) is undefined for n >= c (because no more legal moves are possible)?

Examples

			n=1: B--o
     |
     o
n=2: B--o  B--W
     |     |
     o     o
n=3: B--o  B--W  B--W
     |     |     |
     o     o     B--o
                 |
                 o
n=4: B--o  B--W  B--W  B--W
     |     |     |     |
     o     o     B--o  B--W
                 |     |
                 o     o
n=5: o     o     B--o  B--o  B--B--o
     |     |     |     |     |  |
     B--o  B--o  B--o  B--W  B--W
     |     |     |     |     |
     o     W     W     W     W
n=6: o     o     o--B--o  o--B--o  B--B--o  .--.--W
     |     |     |  |     |  |     |  |     |  |
     B--o  B--o  B--o     B--W     B--W     .--W
     |     |     |        |        |        |
     o     W     W        W        W        W
		

Crossrefs

A327821 Number of legal Go positions on a board which is an n-cycle graph.

Original entry on oeis.org

1, 5, 19, 57, 161, 449, 1247, 3457, 9577, 26525, 73459, 203433, 563369, 1560137, 4320479, 11964673
Offset: 1

Views

Author

Sébastien Palcoux, Sep 26 2019

Keywords

Comments

This is a variation on A102620.

Examples

			A 2-cycle is a 1 X 2 grid so that a(2) = A102620(2) = A266278(1) = 5.
A 4-cycle is a 2 X 2 grid so that a(4) = A094777(2) = A266278(2) = 57.
		

Crossrefs

Programs

  • SageMath
    cpdef GoCycle(int n):
       cdef int i,j,a,l
       cdef list L,LL,T
       LL=[]
       for i in range(3**n):
          L=Integer(i).digits(base=3,padto=n)
          T=[L[0]]
          for j in range(n-1):
             if L[j+1]<>L[j]:
                T.append(L[j+1])
          if len(T)>1 and T[0]==T[-1]:
             T.pop(0)
          a=1
          if 1 in T:
             a=0
             l=len(T)
             if l>2:
                for j in range(-2,l-2):
                   if not 1 in [T[j],T[j+1],T[j+2]]:
                      a=1
                      break
          if a==0:
             L=[j-1 for j in L]
             LL.append(L)
       return LL
    [len(GoCycle(i)) for i in range(1,17)]

Formula

a(n)/A102620(n) converges to 1.44066.... This would imply that a(n+1)/a(n) converges to 2.769292354... the real root of x^3 - 3*x^2 + x - 1 = 0.
From Colin Barker, Sep 26 2019: (Start)
G.f.: x*(1 + x + 3*x^2 - x^3) / ((1 - x)*(1 - 3*x + x^2 - x^3)).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
(End)
From Zhujun Zhang, Sep 28 2020: (Start)
a(n) = r_1^n + r_2^n + r_3^n - 2 where r_1, r_2 and r_3 are roots of x^3 - 3*x^2 + x - 1 = 0 for n > 0.
a(n) = floor(r^n - 3/2) where r is the real root of x^3 - 3*x^2 + x - 1 = 0 for n > 2.
(End)

A268125 Minimal order of recurrence for number of legal n X m Go positions, for fixed n.

Original entry on oeis.org

3, 7, 19, 57, 217, 791, 3107, 12110, 49361
Offset: 1

Views

Author

John Tromp, Jan 26 2016

Keywords

Examples

			For n=1 the minimal recurrence is L(1,m) = 3*L(1,m-1)-L(1,m-2)+L(1,m-3).
		

Crossrefs

A337207 a(n) is the minimal number of legal positions in Go played on connected graphs with n nodes.

Original entry on oeis.org

1, 5, 15, 41, 107, 273, 707, 1817, 4617, 11867, 30425, 76857, 197603, 505871, 1275465, 3276563, 8406527, 21165273, 54338627, 139513379, 351447657, 901789811, 2304725075, 5840498937, 14978318243, 38107010435, 97141424265, 248995117523, 630641012147
Offset: 1

Views

Author

Zhujun Zhang, Aug 19 2020

Keywords

Comments

Consider a Go game played on general graphs instead of grids. The position that each group has at least one liberty is called a legal position. 2^(n+1)-3 and 3^n-2^n are respectively the trivial lower bound and upper bound of this sequence. The Mathematics of Go interest group computed this sequence up to n=481.

Crossrefs

Showing 1-10 of 10 results.