A356049
Symmetric array read by antidiagonals: T(n,k) is the number of legal positions in Go on an n X k board.
Original entry on oeis.org
1, 5, 5, 15, 57, 15, 41, 489, 489, 41, 113, 4125, 12675, 4125, 113, 313, 35117, 321689, 321689, 35117, 313, 867, 299681, 8180343, 24318165, 8180343, 299681, 867, 2401, 2557605, 208144601, 1840058693, 1840058693, 208144601, 2557605, 2401
Offset: 1
Array begins:
1, 5, 15, 41, ...
5, 57, 489, ...
15, 489, ...
41, ...
...
T(3,1) = 15 from
... ..w ..b .w. .ww .b. .bb w.. w.w w.b ww. b.. b.w b.b bb.
A356134
Triangular array giving total number of legal Go positions on an n X k board.
Original entry on oeis.org
1, 5, 57, 15, 489, 12675, 41, 4125, 321689, 24318165, 113, 35117, 8180343, 1840058693, 414295148741, 313, 299681, 208144601, 139304759213, 93332304864173, 62567386502084877, 867, 2557605, 5296282323, 10546705714473, 21026744638200555, 41945191530093646965, 83677847847984287628595
Offset: 1
Triangle T(n,k) begins:
1;
5, 57;
15, 489, 12675;
41, 4125, 321689, 24318165;
113, 35117, 8180343, 1840058693, 414295148741;
...
A356049 gives the table by antidiagonals.
A327821
Number of legal Go positions on a board which is an n-cycle graph.
Original entry on oeis.org
1, 5, 19, 57, 161, 449, 1247, 3457, 9577, 26525, 73459, 203433, 563369, 1560137, 4320479, 11964673
Offset: 1
A 2-cycle is a 1 X 2 grid so that a(2) = A102620(2) = A266278(1) = 5.
A 4-cycle is a 2 X 2 grid so that a(4) = A094777(2) = A266278(2) = 57.
-
cpdef GoCycle(int n):
cdef int i,j,a,l
cdef list L,LL,T
LL=[]
for i in range(3**n):
L=Integer(i).digits(base=3,padto=n)
T=[L[0]]
for j in range(n-1):
if L[j+1]<>L[j]:
T.append(L[j+1])
if len(T)>1 and T[0]==T[-1]:
T.pop(0)
a=1
if 1 in T:
a=0
l=len(T)
if l>2:
for j in range(-2,l-2):
if not 1 in [T[j],T[j+1],T[j+2]]:
a=1
break
if a==0:
L=[j-1 for j in L]
LL.append(L)
return LL
[len(GoCycle(i)) for i in range(1,17)]
A268125
Minimal order of recurrence for number of legal n X m Go positions, for fixed n.
Original entry on oeis.org
3, 7, 19, 57, 217, 791, 3107, 12110, 49361
Offset: 1
For n=1 the minimal recurrence is L(1,m) = 3*L(1,m-1)-L(1,m-2)+L(1,m-3).
- J. Tromp and G. Farnebäck, Combinatorics of Go, Lecture Notes in Computer Science, 4630, 84-99, 2007.
A337207
a(n) is the minimal number of legal positions in Go played on connected graphs with n nodes.
Original entry on oeis.org
1, 5, 15, 41, 107, 273, 707, 1817, 4617, 11867, 30425, 76857, 197603, 505871, 1275465, 3276563, 8406527, 21165273, 54338627, 139513379, 351447657, 901789811, 2304725075, 5840498937, 14978318243, 38107010435, 97141424265, 248995117523, 630641012147
Offset: 1
Showing 1-5 of 5 results.
Comments