cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A266278 Number of legal Go positions on a 2 X n board.

Original entry on oeis.org

5, 57, 489, 4125, 35117, 299681, 2557605, 21826045, 186255781, 1589441093, 13563736693, 115748216413, 987755062201, 8429158472781, 71931509371765, 613838505628281, 5238284505542721, 44701699729693429, 381468772192258129, 3255321946095461785, 27779786302899765081
Offset: 1

Views

Author

Felix Fröhlich, Dec 26 2015

Keywords

Examples

			For n = 1, the a(1) = 5 legal 2 X 1 boards are .. X. O. .X .O
		

Crossrefs

Programs

  • PARI
    Vec(x*(1 + x)^2*(5 - 3*x - 5*x^3 - x^4) / ((1 + x^2)*(1 - 10*x + 15*x^2 - 21*x^3 - 2*x^4 + x^5)) + O(x^40)) \\ Colin Barker, Jan 05 2018

Formula

a(n) = 10*a(n-1)-16*a(n-2)+31*a(n-3)-13*a(n-4)+20*a(n-5)+2*a(n-6)-a(n-7).
G.f.: x*(1 + x)^2*(5 - 3*x - 5*x^3 - x^4) / ((1 + x^2)*(1 - 10*x + 15*x^2 - 21*x^3 - 2*x^4 + x^5)). - Colin Barker, Jan 05 2018

Extensions

Corrected and edited by John Tromp, Jan 26 2016

A356049 Symmetric array read by antidiagonals: T(n,k) is the number of legal positions in Go on an n X k board.

Original entry on oeis.org

1, 5, 5, 15, 57, 15, 41, 489, 489, 41, 113, 4125, 12675, 4125, 113, 313, 35117, 321689, 321689, 35117, 313, 867, 299681, 8180343, 24318165, 8180343, 299681, 867, 2401, 2557605, 208144601, 1840058693, 1840058693, 208144601, 2557605, 2401
Offset: 1

Views

Author

Douglas Boffey, Jul 24 2022

Keywords

Comments

A Go position is a grid containing white and black stones with the condition that every orthogonally connected group of stones of a single color has liberties, i.e., is orthogonally adjacent to an empty cell.

Examples

			Array begins:
   1,   5,  15,  41, ...
   5,  57, 489, ...
  15, 489, ...
  41, ...
  ...
T(3,1) = 15 from
  ... ..w ..b .w. .ww  .b. .bb w.. w.w w.b  ww. b.. b.w b.b bb.
		

Crossrefs

Columns (or rows) give: A102620, A266278.
Main diagonal gives A094777.
This as triangle gives A356134.

A356134 Triangular array giving total number of legal Go positions on an n X k board.

Original entry on oeis.org

1, 5, 57, 15, 489, 12675, 41, 4125, 321689, 24318165, 113, 35117, 8180343, 1840058693, 414295148741, 313, 299681, 208144601, 139304759213, 93332304864173, 62567386502084877, 867, 2557605, 5296282323, 10546705714473, 21026744638200555, 41945191530093646965, 83677847847984287628595
Offset: 1

Views

Author

Douglas Boffey, Jul 27 2022

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    5,    57;
   15,   489,   12675;
   41,  4125,  321689,   24318165;
  113, 35117, 8180343, 1840058693, 414295148741;
  ...
		

Crossrefs

Columns give: A102620, A266278.
Main diagonal gives A094777.
A356049 gives the table by antidiagonals.

Extensions

a(27) corrected by Sidney Cadot, Jan 05 2023.

A327821 Number of legal Go positions on a board which is an n-cycle graph.

Original entry on oeis.org

1, 5, 19, 57, 161, 449, 1247, 3457, 9577, 26525, 73459, 203433, 563369, 1560137, 4320479, 11964673
Offset: 1

Views

Author

Sébastien Palcoux, Sep 26 2019

Keywords

Comments

This is a variation on A102620.

Examples

			A 2-cycle is a 1 X 2 grid so that a(2) = A102620(2) = A266278(1) = 5.
A 4-cycle is a 2 X 2 grid so that a(4) = A094777(2) = A266278(2) = 57.
		

Crossrefs

Programs

  • SageMath
    cpdef GoCycle(int n):
       cdef int i,j,a,l
       cdef list L,LL,T
       LL=[]
       for i in range(3**n):
          L=Integer(i).digits(base=3,padto=n)
          T=[L[0]]
          for j in range(n-1):
             if L[j+1]<>L[j]:
                T.append(L[j+1])
          if len(T)>1 and T[0]==T[-1]:
             T.pop(0)
          a=1
          if 1 in T:
             a=0
             l=len(T)
             if l>2:
                for j in range(-2,l-2):
                   if not 1 in [T[j],T[j+1],T[j+2]]:
                      a=1
                      break
          if a==0:
             L=[j-1 for j in L]
             LL.append(L)
       return LL
    [len(GoCycle(i)) for i in range(1,17)]

Formula

a(n)/A102620(n) converges to 1.44066.... This would imply that a(n+1)/a(n) converges to 2.769292354... the real root of x^3 - 3*x^2 + x - 1 = 0.
From Colin Barker, Sep 26 2019: (Start)
G.f.: x*(1 + x + 3*x^2 - x^3) / ((1 - x)*(1 - 3*x + x^2 - x^3)).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
(End)
From Zhujun Zhang, Sep 28 2020: (Start)
a(n) = r_1^n + r_2^n + r_3^n - 2 where r_1, r_2 and r_3 are roots of x^3 - 3*x^2 + x - 1 = 0 for n > 0.
a(n) = floor(r^n - 3/2) where r is the real root of x^3 - 3*x^2 + x - 1 = 0 for n > 2.
(End)

A268125 Minimal order of recurrence for number of legal n X m Go positions, for fixed n.

Original entry on oeis.org

3, 7, 19, 57, 217, 791, 3107, 12110, 49361
Offset: 1

Views

Author

John Tromp, Jan 26 2016

Keywords

Examples

			For n=1 the minimal recurrence is L(1,m) = 3*L(1,m-1)-L(1,m-2)+L(1,m-3).
		

Crossrefs

A337207 a(n) is the minimal number of legal positions in Go played on connected graphs with n nodes.

Original entry on oeis.org

1, 5, 15, 41, 107, 273, 707, 1817, 4617, 11867, 30425, 76857, 197603, 505871, 1275465, 3276563, 8406527, 21165273, 54338627, 139513379, 351447657, 901789811, 2304725075, 5840498937, 14978318243, 38107010435, 97141424265, 248995117523, 630641012147
Offset: 1

Views

Author

Zhujun Zhang, Aug 19 2020

Keywords

Comments

Consider a Go game played on general graphs instead of grids. The position that each group has at least one liberty is called a legal position. 2^(n+1)-3 and 3^n-2^n are respectively the trivial lower bound and upper bound of this sequence. The Mathematics of Go interest group computed this sequence up to n=481.

Crossrefs

Showing 1-6 of 6 results.