cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004984 a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).

Original entry on oeis.org

1, -2, -6, -28, -154, -924, -5852, -38456, -259578, -1788204, -12517428, -88759944, -636112932, -4599585816, -33511268088, -245749299312, -1812401082426, -13433090375628, -100001895018564, -747382583822952, -5605369378672140, -42173731515723720
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25],n->(2^n/Factorial(n))*Product([0..n-1],k->4*k-1)); # Muniru A Asiru, Apr 28 2018
    
  • Magma
    [1] cat [2^n*(&*[4*k-1: k in [0..n-1]])/Factorial(n): n in [1..30]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    seq(-(1/4)*8^n*GAMMA(n-1/4)/(GAMMA(3/4)*n!), n=0..30); # Robert Israel, Sep 29 2014
  • Mathematica
    Table[8^n*Pochhammer[-1/4, n]/n!, {n,0,30}] (* G. C. Greubel, Aug 22 2019 *)
    CoefficientList[Series[Surd[1-8x,4],{x,0,30}],x] (* Harvey P. Dale, Dec 08 2019 *)
  • Maxima
    a(n):=-1/n*(if n=1 then (2)^n else sum(sum(binomial(k,j)* binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j),j,0,k)*binomial(k+n-1,n-1)*(2)^n,k,1,n-1)); /* Vladimir Kruchinin, Sep 14 2010 */
    
  • Maxima
    a(n):=binomial(1/4,n)*(-8)^n; /* Tani Akinari, Sep 28 2014 */
    
  • PARI
    for(n=0,28,print1(2^n/n!*prod(k=0,n-1,(4*k-1)),","))
    
  • Sage
    [8^n*rising_factorial(-1/4, n)/factorial(n) for n in (0..30)] # G. C. Greubel, Aug 22 2019

Formula

G.f.: (1 - 8*x)^(1/4).
a(n) ~ -1/4*Gamma(3/4)^-1*n^(-5/4)*2^(3*n)*{1 + 5/32*n^-1 + ...}
a(n) = -1/n*Sum_{k=1..n-1} 2^n*binomial(k+n-1, n-1) * ( Sum_{j=0..k} binomial(k,j)*binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j) ), n>1. - Vladimir Kruchinin, Sep 14 2010
a(n) = 8^n*Pochhammer(-1/4, n)/n! = -(1/4)*8^n*Gamma(n-1/4)/(Gamma(3/4)*n!). - Robert Israel, Sep 29 2014
D-finite with recurrence: n*a(n) +2*(-4*n+5)*a(n-1)=0. - R. J. Mathar, Jan 16 2020

Extensions

More terms from Jason Earls, Dec 04 2001

A025749 4th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 6, 56, 616, 7392, 93632, 1230592, 16612992, 228890112, 3204461568, 45445091328, 651379642368, 9419951751168, 137262154088448, 2013178259963904, 29694379334467584, 440175505428578304, 6553724191936610304, 97960930026841964544, 1469413950402629468160
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (4^(n-1)*Sum[ Binomial[n+k-1, n-1]*Sum[ Binomial[j, n-3*k+2*j-1] * 4^(j-k) * Binomial[k, j] * 3^(-n+3*k-j+1) * 2^(n-3*k+j-1) * (-1)^(n-3*k+2*j-1), {j, 0, k}], {k, 1, n-1}])/n; a[0] = a[1] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Mar 05 2013, after Vladimir Kruchinin *)
    a[n_] := 16^(n-1) * Pochhammer[3/4, n-1]/n!; a[0] = 1; Array[a, 21, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a(n):=(4^(n-1)*sum(binomial(n+k-1,n-1)*sum(binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1),j,0,k),k,1,n-1))/n; /* Vladimir Kruchinin, Apr 01 2011 */

Formula

a(n) = 2^(n-1) * A048779(n), n > 1.
From Wolfdieter Lang: (Start)
G.f.: (5-(1-16*x)^(1/4))/4.
a(n) = 4^(n-1)*3*A034176(n-1)/n!, n >= 2, where 3*A034176(n-1) = (4*n-5)(!^4) = Product_{j=2..n} (4*j - 5). (End)
a(n) = (4^(n-1) * Sum_{k=1..n-1} binomial(n+k-1,n-1) * Sum_{j=0..k} binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1))/n. - Vladimir Kruchinin, Apr 01 2011
n*a(n) + 4*(-4*n+5)*a(n-1) = 0. - R. J. Mathar, Apr 05 2018
a(n) ~ 16^(n-1) / (Gamma(3/4) * n^(5/4)). - Amiram Eldar, Aug 20 2025

A254286 Expansion of (1 - (1-256*x)^(1/4)) / (64*x).

Original entry on oeis.org

1, 96, 14336, 2523136, 484442112, 98180268032, 20645907791872, 4459516083044352, 983075545417777152, 220208922173582082048, 49967406340478261526528, 11459191854083014643417088, 2651480699775516003646046208, 618173786004806016850049630208
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Crossrefs

Programs

  • Magma
    [Round(2^(8*n)*Gamma(n+3/4)/(Gamma(3/4)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
    
  • Mathematica
    CoefficientList[Series[(1-(1-256*x)^(1/4)) / (64*x),{x,0,20}],x]
    CoefficientList[Series[Hypergeometric1F1[3/4,2,256*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
  • SageMath
    [2^(8*n)*rising_factorial(3/4,n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022

Formula

G.f.: (1 - (1-256*x)^(1/4)) / (64*x).
a(n) ~ 256^n / (Gamma(3/4) * n^(5/4)).
Recurrence: (n+1)*a(n) = 64*(4*n-1)*a(n-1).
a(n) = 256^n * Gamma(n+3/4) / (Gamma(3/4) * Gamma(n+2)).
E.g.f.: hypergeom([3/4], [2], 256*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/4, n+1)*4^(4*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 16^n*A025749(n+1); a(n) = 32^n*A048779(n+1).
(End)

A097179 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 4^n, where R_n(y) forms the initial (n+1) terms of g.f. A077860(y)^(n+1).

Original entry on oeis.org

1, 1, 6, 1, 9, 42, 1, 12, 74, 308, 1, 15, 115, 595, 2310, 1, 18, 165, 1020, 4746, 17556, 1, 21, 224, 1610, 8722, 37730, 134596, 1, 24, 292, 2392, 14778, 73080, 299508, 1038312, 1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2004

Keywords

Comments

Row sums form A097180. Diagonal is A004982. Ratio of g.f.s of any two adjacent diagonals equals g.f. of A048779, where the g.f.s satisfy: A077860(x*A048779(x)) = A048779(x).

Examples

			Row polynomials evaluated at y=1/2 equals powers of 4:
4^1 = 1 + 6/2;
4^2 = 1 + 9/2 + 42/2^2;
4^3 = 1 + 12/2 + 74/2^2 + 308/2^3;
4^4 = 1 + 15/2 + 115/2^2 + 595/2^3 + 2310/2^4;
where A077860(y)^(n+1) has the same initial terms as the n-th row:
A077860(y) = 1 +3*y +5*y^2 +5*y^3 +1*y^4 -7*y^5 -15*y^6 -15*y^7 +...
A077860(y)^2 = 1 + 6*y +...
A077860(y)^3 = 1 + 9*y + 42*y^2 +...
A077860(y)^4 = 1 + 12*y + 74*y^2 + 308*y^3 +...
A077860(y)^5 = 1 + 15*y + 115*y^2 + 595*y^3 + 2310*y^4 +...
Rows begin with n=0:
  1;
  1,  6;
  1,  9,  42;
  1, 12,  74,  308;
  1, 15, 115,  595,  2310;
  1, 18, 165, 1020,  4746, 17556;
  1, 21, 224, 1610,  8722, 37730,  134596;
  1, 24, 292, 2392, 14778, 73080,  299508, 1038312;
  1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918; ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[2*y/((1-8*x*y) +(2*y-1)*(1-8*x*y)^(3/4)), {x, 0, n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    {T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n-sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}

Formula

G.f.: A(x, y) = 2*y/((1-8*x*y) + (2*y-1)*(1-8*x*y)^(3/4)).
G.f.: A(x, y) = A004982(x*y)/(1 - x*A048779(x*y)).
Showing 1-4 of 4 results.