cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A008545 Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).

Original entry on oeis.org

1, 3, 21, 231, 3465, 65835, 1514205, 40883535, 1267389585, 44358635475, 1729986783525, 74389431691575, 3496303289504025, 178311467764705275, 9807130727058790125, 578620712896468617375, 36453104912477522894625, 2442358029135994033939875
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n-1), n >= 1, enumerates increasing plane (a.k.a. ordered) trees with n vertices (one of them a root labeled 1) with one version of a vertex with out-degree r = 0 (a leaf or a root) and each vertex with out-degree r >= 1 comes in binomial(r + 2, 2) types (like a binomial(r + 2, 2)-ary vertex). See the increasing tree comments under A001498. For example, a(1) = 3 from the three trees with n = 2 vertices (a root (out-degree r = 1, label 1) and a leaf (r = 0), label 2). There are three such trees because of the three types of out-degree r = 1 vertices. - Wolfdieter Lang, Oct 05 2007 [corrected by Karen A. Yeats, Jun 17 2013]
a(n) is the product of the positive integers less than or equal to 4n that have modulo 4 = 3. - Peter Luschny, Jun 23 2011

Examples

			G.f. = 1 + 3*x + 21*x^2 + 231*x^3 + 3465*x^4 + 65835*x^5 + 1514205*x^6 + ...
a(3) = sigma[4,3]^{3}_3 = 3*7*11 = 231. See the name. - _Wolfdieter Lang_, May 29 2017
		

Crossrefs

a(n)= A000369(n+1, 1) (first column of triangle).
Partial products of A004767.
Cf. A007696, A014601, A225471 (first column).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 4*k+3) ); # G. C. Greubel, Aug 18 2019
  • Haskell
    a008545 n = a008545_list !! n
    a008545_list = scanl (*) 1 a004767_list
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [1] cat [(&*[4*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    f := n->product( (4*k-1),k=0..n);
    A008545 := n -> mul(k, k = select(k-> k mod 4 = 3, [$1 .. 4*n])): seq(A008545(n), n=0..15); # Peter Luschny, Jun 23 2011
  • Mathematica
    FoldList[Times, 1, 4 Range[0, 20] + 3] (* Harvey P. Dale, Jan 19 2013 *)
    a[n_]:= Pochhammer[3/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
    a[n_]:= If[n < 0, 1 / Product[ -k, {k, 1, -4 n - 3, 4}], Product[k, {k, 3, 4 n - 1, 4}]]; (* Michael Somos, Jan 17 2014 *)
  • PARI
    a(n)=prod(k=0,n-1,4*k+3) \\ Charles R Greathouse IV, Jun 23 2011
    
  • PARI
    {a(n) = if( n<0, 1 / prod(k=1, -n, 3 - 4*k), prod(k=1, n, 4*k - 1))}; /* Michael Somos, Jan 17 2014 */
    
  • Sage
    [product(4*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = 3*A034176(n) = (4*n-1)(!^4), n >= 1, a(0) := 1.
E.g.f.: (1-4*x)^(-3/4).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(3/4)^(-1)*n^(1/4)*2^(2*n)*e^(-n)*n^n*{1 - 1/96*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: 1/(1 - 3x/(1 - 4x/(1 - 7x/(1 - 8x/(1 - 11x/(1 - 12x/(1 - 15x/(1 - 16x/(1 - 19x/(1 - 20x/(1 - 23x/(1 - 24x/(1 - ...))))))))))))) (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-1)^n*Sum_{k = 0..n} 4^k*s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
D-finite with recurrence: a(n) + (-4*n + 1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
G.f.: 1/x - G(0)/(2*x), where G(k)= 1 + 1/(1 - x*(4*k-1)/(x*(4*k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(-n) = (-1)^n / A007696(n). - Michael Somos, Jan 17 2014
G.f.: 1/(1 - b(1)*x / (1 - b(2)*x / ...)) where b = A014601. - Michael Somos, Jan 17 2014
a(n) = 4^n * Gamma(n+3/4) / Gamma(3/4). - Vaclav Kotesovec, Jan 28 2015
G.f.: 1/(1 - 3*x - 12*x^2/(1 - 11*x - 56*x^2/(1 - 19*x - 132*x^2/(1 - 27*x - 240*x^2/(1 - ...))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 28 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(3/4) - Gamma(3/4, 1/4))/sqrt(2). - Amiram Eldar, Dec 18 2022

A254322 Expansion of e.g.f.: (1-11*x)^(-10/11).

Original entry on oeis.org

1, 10, 210, 6720, 288960, 15603840, 1014249600, 77082969600, 6706218355200, 657209398809600, 71635824470246400, 8596298936429568000, 1126115160672273408000, 159908352815462823936000, 24465977980765812062208000, 4012420388845593178202112000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 28 2015

Keywords

Comments

Generally, for k > 1, if e.g.f. = (1-k*x)^(-(k-1)/k) then a(n) ~ n! * k^n / (n^(1/k) * Gamma((k-1)/k)).

Crossrefs

Sequences of the form k^n*Pochhammer((k-1)/k, n): A000007 (k=1), A001147 (k=2), A008544 (k=3), A008545 (k=4), A008546 (k=5), A008543 (k=6), A049209 (k=7), A049210 (k=8), A049211 (k=9), A049212 (k=10), this sequence (k=11), A346896 (k=12).

Programs

  • Magma
    m=11; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
    
  • Mathematica
    CoefficientList[Series[(1-11*x)^(-10/11), {x, 0, 20}], x] * Range[0, 20]!
    FullSimplify[Table[11^n * Gamma[n+10/11] / Gamma[10/11], {n, 0, 18}]]
  • Sage
    m=11; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022

Formula

D-finite with recurrence: a(0) = 1; a(n) = (11*n-1) * a(n-1) for n > 0. [corrected by Georg Fischer, Dec 23 2019]
a(n) = 11^n * Gamma(n+10/11) / Gamma(10/11).
a(n) ~ n! * 11^n / (n^(1/11) * Gamma(10/11)).
From Nikolaos Pantelidis, Jan 17 2021: (Start)
G.f.: 1/G(0) where G(k) = 1 - (22*k+10)*x - 11*(k+1)*(11*k+10)*x^2/G(k+1) (continued fraction).
G.f.: 1/(1-10*x-110*x^2/(1-32*x-462*x^2/(1-54*x-1056*x^2/(1-76*x-1892*x^2/(1-98*x-2970*x^2/(1-...)))))) (Jacobi continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - x*(11*k+10)/(1 - x*(11*k+11)/Q(k+1)) (continued fraction).
G.f.: 1/(1-10*x/(1-11*x/(1-21*x/(1-22*x/(1-32*x/(1-33*x/(1-43*x/(1-44*x/(1-54*x/(1-55*x/(1-...))))))))))) (Stieltjes continued fraction).
(End)
G.f.: hypergeometric2F0([1, 10/11], [--], 11*x). - G. C. Greubel, Feb 08 2022
Sum_{n>=0} 1/a(n) = 1 + (e/11)^(1/11)*(Gamma(10/11) - Gamma(10/11, 1/11)). - Amiram Eldar, Dec 22 2022

A254287 Expansion of (1 - (1 - 3125*x)^(1/5)) / (625*x).

Original entry on oeis.org

1, 1250, 2343750, 5126953125, 12176513671875, 30441284179687500, 78821182250976562500, 209368765354156494140625, 567040406167507171630859375, 1559361116960644721984863281250, 4341403109719976782798767089843750, 12210196246087434701621532440185546875
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Comments

In general, if k > 1 and g.f. = (1 - (1 - k^k * x)^(1/k)) / (k^(k-1) * x), then a(n) ~ k^(k*n) / (Gamma((k-1)/k) * n^((k+1)/k)).

Crossrefs

Cf. A000108 (k=2), A254282 (k=3), A254286 (k=4).

Programs

  • Magma
    [Round(5^(5*n)*Gamma(n+4/5)/(Gamma(4/5)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
    
  • Mathematica
    CoefficientList[Series[(1-(1-3125*x)^(1/5)) / (625*x),{x,0,20}],x]
    CoefficientList[Series[Hypergeometric1F1[4/5,2,3125*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
  • SageMath
    [5^(5*n)*rising_factorial(4/5, n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022

Formula

G.f.: (1 - (1 - 3125*x)^(1/5)) / (625*x).
a(n) ~ 3125^n / (Gamma(4/5) * n^(6/5)).
Recurrence: (n+1)*a(n) = 625*(5*n-1)*a(n-1).
a(n) = 5^(5*n) * Gamma(n+4/5) / (Gamma(4/5) * Gamma(n+2)).
E.g.f.: hypergeom([4/5], [2], 3125*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/5, n+1)*5^(5*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 125^n*A025748(n+1). (End)

A254282 Expansion of (1 - (1 - 27*x)^(1/3)) / (9*x).

Original entry on oeis.org

1, 9, 135, 2430, 48114, 1010394, 22084326, 496897335, 11428638705, 267430145697, 6345388002447, 152289312058728, 3690087176807640, 90143558176300920, 2217531531137002632, 54883905395640815142, 1365640704844474400298, 34141017621111860007450
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Crossrefs

Programs

  • Magma
    [Round(3^(3*n)*Gamma(n+2/3)/(Gamma(2/3)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
    
  • Mathematica
    CoefficientList[Series[(1-(1-27*x)^(1/3))/(9*x),{x,0,20}],x]
    CoefficientList[Series[Hypergeometric1F1[2/3,2,27*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    nxt[{n_,a_}]:={n+1,((27n+18)*a)/(n+2)}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Jun 03 2019 *)
  • SageMath
    [3^(3*n)*rising_factorial(2/3,n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022

Formula

G.f.: (1 - (1-27*x)^(1/3)) / (9*x).
a(n) ~ 3^(3*n) / (Gamma(2/3) * n^(4/3)).
Recurrence: (n+1)*a(n) = 9*(3*n-1)*a(n-1).
a(n) = 27^n * Gamma(n+2/3) / (Gamma(2/3) * Gamma(n+2)).
E.g.f.: hypergeom([2/3], [2], 27*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/3, n+1)*3^(3*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 3^n*A025748(n+1). (End)
Showing 1-4 of 4 results.