A289392
Coefficients in expansion of E_2^(1/4).
Original entry on oeis.org
1, -6, -72, -1104, -20238, -405792, -8601840, -189317568, -4281478272, -98841343686, -2318973049008, -55118876238000, -1324194430710912, -32099173821105312, -784045854628721568, -19276683937074656064, -476644852188898489662
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A110150
G.f.: 4th root of Eisenstein series E_10 (cf. A013974).
Original entry on oeis.org
1, -66, -40392, -9009264, -3725341158, -1400292801072, -604993149612720, -262280205541007808, -118717180239835505592, -54520207050101542651506, -25525844887805197307977968, -12095360676632550886664063760, -5797006133905562955666277287792, -2803076705590018145443840156918512
Offset: 0
-
nmax = 20; s = 10; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
A048779
Coefficients of power series for (1 - (1-8*x)^(1/4))/2.
Original entry on oeis.org
1, 3, 14, 77, 462, 2926, 19228, 129789, 894102, 6258714, 44379972, 318056466, 2299792908, 16755634044, 122874649656, 906200541213, 6716545187814, 50000947509282, 373691291911476, 2802684689336070, 21086865757861860, 159109987082048580, 1203701641403324040
Offset: 1
G.f.: x + 3*x^2 + 14*x^3 + 77*x^4 + 462*x^5 + 2926*x^6 + 19228*x^7 + ...
Related to Catalan numbers (
A000108).
-
[Round(8^(n-1)*Gamma(n-1/4)/(Gamma(3/4)*Gamma(n+1))): n in [1..40]]; // G. C. Greubel, Aug 09 2022
-
a[ n_]:= If[n<1, 0, (-1/2)Pochhammer[-1/4, n] 8^n/n!] (* Michael Somos, Jan 17 2014 *)
a[ n_]:= SeriesCoefficient[(1 -(1-8x)^(1/4))/2, {x,0,n}] (* Michael Somos, Jan 17 2014 *)
-
{a(n) = if( n<0, 0, polcoeff( (1 - (1 - 8*x + x * O(x^n))^(1/4)) / 2, n))} /* Michael Somos, Jan 17 2014 */
-
[8^(n-1)*binomial(n-5/4,-1/4)/n for n in (1..40)] # G. C. Greubel, Aug 09 2022
A289391
Coefficients in expansion of E_14^(1/4).
Original entry on oeis.org
1, -6, -49212, -10451544, -4218246978, -1581565900392, -677142351901080, -293172823731286848, -132241381826055031692, -60651805300034501958126, -28350123351848675673466968, -13420046900399367136336144200
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A301271
Expansion of (1-16*x)^(1/8).
Original entry on oeis.org
1, -2, -14, -140, -1610, -19964, -259532, -3485144, -47920730, -670890220, -9526641124, -136837208872, -1984139528644, -28998962341720, -426699017313880, -6315145456245424, -93937788661650682, -1403541077650545484, -21053116164758182260, -316904801216886322440
Offset: 0
(1-b*x)^(1/
A003557(b)):
A002420 (b=4),
A004984 (b=8),
A004990 (b=9), (-1)^n *
A108735 (b=12), this sequence (b=16), (-1)^n *
A108733 (b=18),
A049393 (b=25),
A004996 (b=36),
A303007 (b=240),
A303055 (b=504),
A305886 (b=1728).
A303007
Expansion of (1-240*x)^(1/8).
Original entry on oeis.org
1, -30, -3150, -472500, -81506250, -15160162500, -2956231687500, -595469525625000, -122815589660156250, -25791273828632812500, -5493541325498789062500, -1183608449221102734375000, -257434837705589844726562500, -56437637496994696728515625000
Offset: 0
(1-b*x)^(1/
A003557(b)):
A002420 (b=4),
A004984 (b=8),
A004990 (b=9), (-1)^n *
A108735 (b=12),
A301271 (b=16), (-1)^n *
A108733 (b=18),
A049393 (b=25),
A004996 (b=36), this sequence (b=240),
A303055 (b=504),
A305886 (b=1728).
-
CoefficientList[Series[Surd[1-240x,8],{x,0,20}],x] (* Harvey P. Dale, Aug 29 2024 *)
-
N=20; x='x+O('x^N); Vec((1-240*x)^(1/8))
A305991
Expansion of (1-27*x)^(1/9).
Original entry on oeis.org
1, -3, -36, -612, -11934, -250614, -5513508, -125235396, -2911722957, -68910776649, -1653858639576, -40143659706072, -983519662798764, -24285370135261788, -603664914790793016, -15091622869769825400, -379177024602966863175, -9568643738510163782475
Offset: 0
(1-b*x)^(1/
A003557(b)):
A002420 (b=4),
A004984 (b=8),
A004990 (b=9), (-1)^n *
A108735 (b=12),
A301271 (b=16), (-1)^n *
A108733 (b=18),
A049393 (b=25), this sequence (b=27),
A004996 (b=36),
A303007 (b=240),
A303055 (b=504),
A305886 (b=1728).
Showing 1-7 of 7 results.