A289392
Coefficients in expansion of E_2^(1/4).
Original entry on oeis.org
1, -6, -72, -1104, -20238, -405792, -8601840, -189317568, -4281478272, -98841343686, -2318973049008, -55118876238000, -1324194430710912, -32099173821105312, -784045854628721568, -19276683937074656064, -476644852188898489662
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A341875
Coefficients of the series whose 24th power equals E_2(x)*E_4(x)/E_6(x), where E_2(x), E_4(x) and E_6(x) are the Eisenstein series A006352, A004009 and A013973.
Original entry on oeis.org
1, 30, 5310, 2453220, 910100190, 409796742600, 181276113779460, 84362079365838960, 39636500385830239350, 18986938020443181757410, 9186944625290601368703000, 4491611148118819794144792660, 2212757749022582852433835771860, 1097546094982154634980848454416920
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A008410 (E_8),
A013973,
A013974 (E_10).
A108091 (E_8)^(1/16),
A110150 ((E_10)^(1/4)),
A289392 ((E_2)^(1/4)),
A341871 -
A341874,
A377973,
A377974,
A377975,
A377976,
A377977.
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)*E(4,x)/E(6,x))^(1/24), x, 20):
seriestolist(%);
A289391
Coefficients in expansion of E_14^(1/4).
Original entry on oeis.org
1, -6, -49212, -10451544, -4218246978, -1581565900392, -677142351901080, -293172823731286848, -132241381826055031692, -60651805300034501958126, -28350123351848675673466968, -13420046900399367136336144200
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A295788
Coefficients in expansion of (E_10/E_2^10)^(1/4).
Original entry on oeis.org
1, -6, -41652, -11504904, -4378103178, -1652544433080, -700184843900712, -302796005909941632, -136251754253507319300, -62421509259448987324542, -29147951871527035454309160, -13787807362002100397282325912
Offset: 0
-
terms = 12;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
(E10[x]/E2[x]^10)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A295790
Coefficients in expansion of E_10^(-1/4).
Original entry on oeis.org
1, 66, 44748, 14628504, 7092895062, 3108317470632, 1487551265488728, 706997530642862976, 344758210436694126204, 169166701402985932594410, 83918648754791525856013272, 41891672444283862758775998792, 21045241902624298023560126068200
Offset: 0
Showing 1-5 of 5 results.
Comments