A341871
Coefficients of the series whose 48th power equals E_2(x)^2/E_4(x), where E_2(x) and E_4(x) are the Eisenstein series A006352 and A004009.
Original entry on oeis.org
1, -6, 558, -88884, 15433662, -2864048616, 552921962724, -109731286565040, 22220439670517814, -4569456313225317114, 951159953810624453208, -199945837161334089352548, 42373766861587365894611604
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)^2/E(4,x))^(1/48), x, 20):
seriestolist(%);
A377973
Expansion of the 96th root of the series 2*E_2(x) - E_2(x)^2, where E_2 is the Eisenstein series of weight 2.
Original entry on oeis.org
1, 0, -6, -36, -1812, -20748, -773340, -12237456, -386587650, -7368446268, -211914644940, -4517757977820, -123221458979940, -2814502962357420, -74551748141034552, -1778129476480366320, -46377354051910716180, -1137191336376638407704, -29438532048777299115090, -735051729258136807204140
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(2) - E(2)^2)^(1/96), q = 0, n),n = 0..20);
-
terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E2[x]^2)^(1/96), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A377974
Expansion of the 1920th root of the series 2*E_4(x) - E_8(x), where E_4 and E_8 are the Eisenstein series of weight 4 and weight 8.
Original entry on oeis.org
1, 0, -30, -540, -867660, -31107300, -33668157900, -1795572812400, -1477793386682970, -103845834995498100, -69550699526934273180, -6017200267937951322660, -3426636160378174348594500, -349303370036461528632524580, -174458882971934188146144343320, -20314204536496741742949242177040
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(4) - E(8))^(1/1920), q = 0, n),n = 0..20);
-
terms = 20; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E4[x] - E8[x])^(1/1920), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A377975
Expansion of the 6048th root of the series 2*E_6(x) - E_6(x)^2, where E_6 is the Eisenstein series of weight 6.
Original entry on oeis.org
1, 0, -42, -2772, -5399688, -704781084, -943173698460, -180121119486672, -188146584694894350, -46293152603021155692, -40574254265781269371884, -11963000065787771567311500, -9221266403646163252100062068, -3107813621461888912485774582588, -2176998806586925223600540321844120
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(6) - E(6)^2)^(1/6048), q = 0, n),n = 0..20);
-
terms = 20; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E6[x] - E6[x]^2)^(1/6048), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A377977
Expansion of the 288th root of the series 3*E_4(x) - 2*E_6(x), where E_4(x) and E_6(x) are the Eisenstein series of weight 4 and 6.
Original entry on oeis.org
1, 6, -5028, 5704188, -7284893010, 9926715853068, -14092613175928308, 20580782244716567592, -30684764269418402550900, 46478269075227117026711730, -71284154421570122590465786956, 110437754516732491586466670733772, -172528135408494997625486967978486588, 271418933884659782820559630827037837908
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((3*E(4) - 2*E(6))^(1/288), q = 0, n), n = 0..20);
-
terms = 20; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(3*E4[x] - 2*E6[x])^(1/288), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A377976
Expansion of the 48th root of the series 2*E_2(x) - E_4(x), where E_2(x) and E_4(x) are the Eisenstein series of weight 2 and 4.
Original entry on oeis.org
1, -6, -894, -174420, -38431614, -9048710040, -2221653118116, -561444889080960, -144914324838755910, -38011797621225586602, -10098281618881696696392, -2710458654395655881518356, -733711171629600485187568404, -200033609249999737396399900920, -54867682197669353983111639906656
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(2) - E(4))^(1/48), q = 0, n),n = 0..20);
-
terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E4[x])^(1/48), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A341874
Coefficients of the series whose 24th power equals E_2(x)^7/E_14(x), where E_2(x) and E_14(x) are the Eisenstein series A006352 and A058550.
Original entry on oeis.org
1, -6, 8118, 1740636, 937783902, 364856395608, 172736345164500, 78278100914583312, 37268001893898954198, 17773741638825114790854, 8624927270409695050736952, 4214914849580580859932456300, 2078204723099375850950863499028
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(14,x) := 1 - 24*add(k^13*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)^7/E(14,x))^(1/24), x, 20):
seriestolist(%);
A341872
Coefficients of the series whose 72nd power equals E_2(x)^3/E_6(x), where E_2(x) and E_6(x) are the Eisenstein series A006352 and A013973.
Original entry on oeis.org
1, 6, 1998, 722484, 291762942, 125454173544, 56146411655460, 25832836404319152, 12128921727745915062, 5783583949613172902394, 2791762868052719757442008, 1360988846025232489401029220, 668925190887642335984231235348, 331039288912491308442251418152952
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)^3/E(6,x))^(1/72), x, 20):
seriestolist(%);
A341873
Coefficients of the series whose 24th power equals E_2(x)^5/E_10(x), where E_2(x) and E_10(x) are the Eisenstein series A006352 and A013974.
Original entry on oeis.org
1, 6, 7038, 2002644, 922569342, 380737463400, 175255606306116, 80315525064955440, 38028486993289854966, 18171889608389845598586, 8807723964899085718419480, 4305311468773791666900669828, 2122088430918938935321961736084
Offset: 0
-
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20):
E(10,x) := 1 - 264*add(k^9*x^k/(1-x^k), k = 1..20):
with(gfun): series((E(2,x)^5/E(10,x))^(1/24), x, 20):
seriestolist(%);
Showing 1-9 of 9 results.
Comments