A341871 Coefficients of the series whose 48th power equals E_2(x)^2/E_4(x), where E_2(x) and E_4(x) are the Eisenstein series A006352 and A004009.
1, -6, 558, -88884, 15433662, -2864048616, 552921962724, -109731286565040, 22220439670517814, -4569456313225317114, 951159953810624453208, -199945837161334089352548, 42373766861587365894611604
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Wikipedia, Eisenstein series
Programs
-
Maple
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20): with(gfun): series((E(2,x)^2/E(4,x))^(1/48), x, 20): seriestolist(%);
Comments