cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A211342 Decimal expansion of q between 0 and 1 maximizing Dedekind eta function eta(q) = q^(1/24) * Product_{n>=1} (1 - q^n).

Original entry on oeis.org

0, 3, 7, 2, 7, 6, 8, 1, 0, 2, 9, 6, 4, 5, 1, 6, 5, 8, 1, 5, 0, 9, 8, 0, 7, 8, 5, 6, 5, 1, 6, 4, 4, 6, 1, 8, 0, 3, 6, 2, 8, 2, 3, 7, 9, 4, 8, 2, 7, 8, 3, 0, 0, 6, 7, 0, 4, 1, 0, 2, 2, 1, 3, 4, 7, 7, 5, 1, 3, 9, 2, 9, 1, 0, 2, 0, 3, 6, 7, 5, 5, 3, 2, 3, 0, 0, 3, 4, 3, 1, 4, 7, 0, 6, 5, 8, 2, 9, 8, 9, 0
Offset: 0

Views

Author

Jean-François Alcover, Feb 05 2013

Keywords

Examples

			0.0372768102964516581509807856516446180362823794827830067...
		

Crossrefs

Programs

  • Mathematica
    q /. Last @ FindMaximum[ DedekindEta[ -I*Log[q]/(2*Pi)], {q, 1/25}, WorkingPrecision -> 200] // RealDigits[#][[1]][[1 ;; 100]]& // Prepend[#, 0]&
    x /. FindRoot[24*Sum[DivisorSigma[1, k]*x^k, {k, 1, 1000}] == 1, {x, 1}, WorkingPrecision -> 101] (* Vaclav Kotesovec, Jun 28 2017 *)

Formula

Root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24. - Vaclav Kotesovec, Jun 28 2017
Equals A057823^2. - Vaclav Kotesovec, Jul 02 2017

A341871 Coefficients of the series whose 48th power equals E_2(x)^2/E_4(x), where E_2(x) and E_4(x) are the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, -6, 558, -88884, 15433662, -2864048616, 552921962724, -109731286565040, 22220439670517814, -4569456313225317114, 951159953810624453208, -199945837161334089352548, 42373766861587365894611604
Offset: 0

Views

Author

Peter Bala, Feb 22 2021

Keywords

Comments

It is easy to see that E_2(x)^2/E_4(x) == 1 - 48*Sum_{k >= 1} (k + 5*k^3)*x^k/(1 - x^k) (mod 288), and also that the integer k + 5*k^3 is always divisible by 6. Hence, E_2(x)^2/E_4(x) == 1 (mod 288). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)^2/E_4(x))^(1/48) = 1 - 6*x + 558*x^2 - 88884*x^3 + 15433662*x^4 - ... has integer coefficients.
Note that (E_2(x)^2/E_4(x))^(1/48) = (E_2(x)^4/E_8(x))^(1/96).

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)^2/E(4,x))^(1/48), x, 20):
    seriestolist(%);

A341875 Coefficients of the series whose 24th power equals E_2(x)*E_4(x)/E_6(x), where E_2(x), E_4(x) and E_6(x) are the Eisenstein series A006352, A004009 and A013973.

Original entry on oeis.org

1, 30, 5310, 2453220, 910100190, 409796742600, 181276113779460, 84362079365838960, 39636500385830239350, 18986938020443181757410, 9186944625290601368703000, 4491611148118819794144792660, 2212757749022582852433835771860, 1097546094982154634980848454416920
Offset: 0

Views

Author

Peter Bala, Feb 23 2021

Keywords

Comments

Since E_2(x)*E_4(x)/E_6(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3 - 21*k^5)*x^k/(1 - x^k) (mod 144), and since the integer k - 10*k^3 - 21*k^5 is always divisible by 6 it follows that E_2(x)*E_4(x)/E_6(x) == 1 (mod 144). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x)/E_6(x))^(1/24) = 1 + 30*x + 5310*x^2 + 2453220*x^3 + 910100190*x^4 + ... has integer coefficients.
From Peter Bala, Nov 16 2024 (Start):
Expansion of ( E_2(x)*E_8(x)/E_10(x) )^(1/24), where E_k(x) is the Eisenstein series of weight k.
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) and E_10(x) lie in P(4) while the series E_8(x) lies in P(16) (Heninger et al.).
We claim that the series (E_2(x)*E_8(x))/E_10(x) belongs to P(24).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
E_8(x) = 1 + 480*Sum_{n >= 1} sigma_7(n)*x^n.
E_10(x) = 1 - 264*Sum_{n >= 1} sigma_9(n)*x^n.
Hence, E_2(x)*E_8(x)/E_10(x) == 1 + (12^2)*Sum_{n >= 1} (1/6)*(-sigma_1(n) + 20*sigma_7(n) + 11*sigma_9(n))*x^n (mod 12^2) in R. The polynomial (1/6)*(-k + 20*k^7 + 11*k^9) of degree 9 is integer-valued since it takes integer values for 10 consective values of n (e.g., from n = 0 to n = 9).
Hence, E_2(x)*E_8(x)/E_10(x) == 1 (mod 12^2) == 1 (mod (2^4)*(3^2)) in R.
It follows from Heninger et al., Theorem 1, Corollary 2, that the series E_2(x)*E_8(x)/E_10(x) belongs to P((2^3)*3) = P(24). End Proof. (End)

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A008410 (E_8), A013973, A013974 (E_10). A108091 (E_8)^(1/16), A110150 ((E_10)^(1/4)), A289392 ((E_2)^(1/4)), A341871 - A341874, A377973, A377974, A377975, A377976, A377977.

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x)/E(6,x))^(1/24), x, 20):
    seriestolist(%);

Formula

a(n) ~ c * exp(2*Pi*n) / n^(23/24), where c = 0.0431061156115657949750305669836959595841497962033916083447436... - Vaclav Kotesovec, Mar 08 2021
Equals the series ( E_2(x)*E_8(x)/E_10(x) )^(1/24). - Peter Bala, Nov 16 2024

A110150 G.f.: 4th root of Eisenstein series E_10 (cf. A013974).

Original entry on oeis.org

1, -66, -40392, -9009264, -3725341158, -1400292801072, -604993149612720, -262280205541007808, -118717180239835505592, -54520207050101542651506, -25525844887805197307977968, -12095360676632550886664063760, -5797006133905562955666277287792, -2803076705590018145443840156918512
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2005

Keywords

Crossrefs

E_k^(1/4): A289392 (k=2), A289307 (k=4), A289326 (k=6), A289292 (k=8), this sequence (k=10), A289391 (k=14).

Programs

  • Mathematica
    nmax = 20; s = 10; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)

Formula

a(n) ~ c * exp(2*Pi*n) / n^(5/4), where c = -3^(3/4) * Pi^(3/2) / (2^(15/4) * Gamma(3/4)^7) = -0.227361380713650977567497769428903183591275821407342369621... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
G.f.: Sum_{k>=0} A004984(k) * (33*f(q))^k where f(q) is Sum_{k>=1} sigma_9(k)*q^k. - Seiichi Manyama, Jun 16 2018

A289394 a(n) = A288968(n)/4.

Original entry on oeis.org

6, 87, 1606, 32325, 694662, 15528631, 357084294, 8381837481, 199870549318, 4825613579415, 117685008900294, 2893968761750149, 71662670867210118, 1785128827454666007, 44695890712594405318, 1124087528135149982673, 28381310631267855206406
Offset: 1

Views

Author

Seiichi Manyama, Jul 05 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A288968, A289392 (E_2^(1/4)).

Formula

a(n) = 1/2 + (1/(48*n)) * Sum_{d|n} A008683(n/d) * A288877(d).

A377973 Expansion of the 96th root of the series 2*E_2(x) - E_2(x)^2, where E_2 is the Eisenstein series of weight 2.

Original entry on oeis.org

1, 0, -6, -36, -1812, -20748, -773340, -12237456, -386587650, -7368446268, -211914644940, -4517757977820, -123221458979940, -2814502962357420, -74551748141034552, -1778129476480366320, -46377354051910716180, -1137191336376638407704, -29438532048777299115090, -735051729258136807204140
Offset: 0

Views

Author

Peter Bala, Nov 13 2024

Keywords

Comments

Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) (Heninger et al.). Hence E_2(x)^2 lies in P(8).
We claim that the series 2*E_2(x) - E_2(x)^2 belongs to P(96).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
Hence,
2*E_2(x) - E_2(x)^2 = 1 - (24^2)*(Sum_{n >= 1} sigma_1(n)*x^n )^2 is in the set R.
Hence, 2*E_2(x) - E_2(x)^2 == 1 (mod 24^2) == 1 (mod (2^6)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_2(x)^2 belongs to P((2^5)*3) = P(96). End Proof.

Crossrefs

Cf. A006352 (E_2), A281374 (E_2)^2, A289392 ((E_2)^(1/4)), A341801, A341871 - A341875, A377974, A377975, A377976, A377977.

Programs

  • Maple
    with(numtheory):
    E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
    seq(coeftayl((2*E(2) - E(2)^2)^(1/96), q = 0, n),n = 0..20);
  • Mathematica
    terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E2[x]^2)^(1/96), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)

Formula

a(n) ~ c / (r^n * n^(97/96)), where r = A211342 = 0.03727681029645165815098... and c = -0.0104397599261506010365791466642760245638473040812140699981294533624... - Vaclav Kotesovec, Aug 03 2025

A289391 Coefficients in expansion of E_14^(1/4).

Original entry on oeis.org

1, -6, -49212, -10451544, -4218246978, -1581565900392, -677142351901080, -293172823731286848, -132241381826055031692, -60651805300034501958126, -28350123351848675673466968, -13420046900399367136336144200
Offset: 0

Views

Author

Seiichi Manyama, Jul 05 2017

Keywords

Crossrefs

E_k^(1/4): A289392 (k=2), A289307 (k=4), A289326 (k=6), A289292 (k=8), A110150 (k=10), this sequence (k=14).
Cf. A004984, A058550 (E_14).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A289029(n)/4).
a(n) ~ c * exp(2*Pi*n) / n^(5/4), where c = -3*Pi^2 / (2^(17/4) * Gamma(3/4)^9) = -0.2497407198517688195944362279691013167903920989625478927175764401875... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018
G.f.: Sum_{k>=0} A004984(k) * (3*f(q))^k where f(q) is Sum_{k>=1} sigma_13(k)*q^k. - Seiichi Manyama, Jun 16 2018

A377976 Expansion of the 48th root of the series 2*E_2(x) - E_4(x), where E_2(x) and E_4(x) are the Eisenstein series of weight 2 and 4.

Original entry on oeis.org

1, -6, -894, -174420, -38431614, -9048710040, -2221653118116, -561444889080960, -144914324838755910, -38011797621225586602, -10098281618881696696392, -2710458654395655881518356, -733711171629600485187568404, -200033609249999737396399900920, -54867682197669353983111639906656
Offset: 0

Views

Author

Peter Bala, Nov 14 2024

Keywords

Comments

Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) and E_4(x) lies in P(8) (Heninger et al.).
We claim that the series 2*E_2(x) - E_4(x) belongs to P(48).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n.
Hence,
2*E_2(x) - E_4(x) = 1 - (288)*Sum_{n >= 1} ((1/6)*sigma_1(n) + (5/6)*sigma_3(n))*x^n belongs to the set R, since the polynomial (1/6)*k + (5/6)*k^3 has integer values for integer k. See A004068.
Hence, 2*E_2(x) - E_4(x) == 1 (mod 288) == 1 (mod (2^5)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_4(x) belongs to P((2^4)*3) = P(48). End Proof.
In a similar way we find that the series 3*E_2(x) - E_6(x) - 1 belongs to P(72) and the three series 3*E_4(x) - 2*E_6(x), 5*E_4(x) - 2*E_10(x) - 2 and 5*E_6(x) - 3*E_10(x) - 1 belong to P(288).

Crossrefs

Cf. A004068, A006352 (E_2), A004009 (E_4), A108091 ((E_4)^1/8), A289392 ((E_2)^(1/4)), A341871 - A341875, A377973, A377974, A377975, A377977.

Programs

  • Maple
    with(numtheory):
    E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
    seq(coeftayl((2*E(2) - E(4))^(1/48), q = 0, n),n = 0..20);
  • Mathematica
    terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E4[x])^(1/48), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)

Formula

a(n) ~ c * d^n / n^(49/48), where d = 295.8669385406700495308385233671383399895922733900742171390678012914822364544611... and c = -0.0205882497833853345146399243734199945444083043388859856935627869352251231763... - Vaclav Kotesovec, Aug 03 2025

A289393 Coefficients in expansion of E_2^(3/4).

Original entry on oeis.org

1, -18, -108, -936, -13194, -224424, -4218264, -84318336, -1759467636, -37903487130, -836893437912, -18844318997496, -431163494289720, -9997357777073064, -234430475682110256, -5550426839122171776, -132513976699508759994
Offset: 0

Views

Author

Seiichi Manyama, Jul 05 2017

Keywords

Crossrefs

E_2^(k/4): A289392 (k=1), A289291 (k=2), this sequence (k=3).
Cf. A006352 (E_2), A289394.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(3*A289394(n)).
a(n) ~ c / (n^(7/4) * r^n), where r = A211342 = 0.03727681029645165815098078565... is the root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24 and c = -0.22385630328806525639758543854251232523806175231599584032442913209... - Vaclav Kotesovec, Jul 08 2017

A341801 Coefficients of the series whose 12th power equals E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973.

Original entry on oeis.org

1, -24, -13932, -3585216, -1580941068, -628142318640, -281617154080704, -126114490533924480, -58596395743623957084, -27537281150571923942424, -13153668428658997172513880, -6345860505664230715931502912, -3091029995619009106117946403456
Offset: 0

Views

Author

Peter Bala, Feb 20 2021

Keywords

Comments

The g.f. is the 12th root of the g.f. of A282102.
It is easy to see that E_2(x)*E_4(x)*E_6(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3 + 21*k*5)*x^k/(1 - x^k) (mod 72), and also that the integer k - 10*k^3 + 21*k*5 = k*(3*k^2 - 1)*(7^k^2 - 1) is always divisible by 3. Hence, E_2(x)*E_4(x)*E_6(x) == 1 (mod 72). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x)* E_6(x))^(1/12) = 1 - 24*x - 13932*x^2 - 3585216*x^3 - 1580941068*x^4 - ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x)*E(6,x))^(1/12), x, 20):
    seriestolist(%);
Showing 1-10 of 12 results. Next