cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282102 Coefficients in q-expansion of E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -288, -129168, -1927296, 65152656, 1535768640, 15223408704, 98001292032, 474055120080, 1870878793824, 6312358836000, 18835985199744, 50831420617152, 126257508465984, 292348744636032, 637474437331200, 1319883180896592, 2610964045674432, 4963491913583664
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Comments

The series expansion of the 12th root of the generating function gives A341801. - Peter Bala, Feb 23 2021

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A013974 (E_10).
Cf. A281374 (E_2^2), A282019 (E_2*E_4), A282096 (E_2*E_6), A282101 (E_2*E_8), this sequence (E_2*E_10), A341801.

Programs

  • Mathematica
    terms = 19;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]*E4[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

A377973 Expansion of the 96th root of the series 2*E_2(x) - E_2(x)^2, where E_2 is the Eisenstein series of weight 2.

Original entry on oeis.org

1, 0, -6, -36, -1812, -20748, -773340, -12237456, -386587650, -7368446268, -211914644940, -4517757977820, -123221458979940, -2814502962357420, -74551748141034552, -1778129476480366320, -46377354051910716180, -1137191336376638407704, -29438532048777299115090, -735051729258136807204140
Offset: 0

Views

Author

Peter Bala, Nov 13 2024

Keywords

Comments

Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) (Heninger et al.). Hence E_2(x)^2 lies in P(8).
We claim that the series 2*E_2(x) - E_2(x)^2 belongs to P(96).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
Hence,
2*E_2(x) - E_2(x)^2 = 1 - (24^2)*(Sum_{n >= 1} sigma_1(n)*x^n )^2 is in the set R.
Hence, 2*E_2(x) - E_2(x)^2 == 1 (mod 24^2) == 1 (mod (2^6)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_2(x)^2 belongs to P((2^5)*3) = P(96). End Proof.

Crossrefs

Cf. A006352 (E_2), A281374 (E_2)^2, A289392 ((E_2)^(1/4)), A341801, A341871 - A341875, A377974, A377975, A377976, A377977.

Programs

  • Maple
    with(numtheory):
    E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
    seq(coeftayl((2*E(2) - E(2)^2)^(1/96), q = 0, n),n = 0..20);
  • Mathematica
    terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E2[x]^2)^(1/96), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)

Formula

a(n) ~ c / (r^n * n^(97/96)), where r = A211342 = 0.03727681029645165815098... and c = -0.0104397599261506010365791466642760245638473040812140699981294533624... - Vaclav Kotesovec, Aug 03 2025
Showing 1-2 of 2 results.