cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A299712 Coefficients in expansion of (E_14/E_2^14)^(1/4).

Original entry on oeis.org

1, 78, -44928, -14386944, -5323508814, -1996794824544, -833028042023424, -358702721913389568, -160514702770156497360, -73334654476723097306706, -34151846554093744054455552, -16125009656471947012310740224
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 12;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    E14[x_] = E4[x]*E10[x];
    (E14[x]/E2[x]^14)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) ~ -2^(3/4) * sqrt(3) * Pi^(11/2) * exp(2*Pi*n) / (864 * Gamma(3/4)^9 * n^(5/4)). - Vaclav Kotesovec, Jun 03 2018

A295789 Coefficients in expansion of (E_2^10/E_10)^(1/4).

Original entry on oeis.org

1, 6, 41688, 12004944, 6255550842, 2695992722640, 1307462364035856, 620555045749642560, 303682876579628930376, 149120254553558991647766, 74080234869800200742166480, 37009440946783240703100165168, 18607581180714384607619205911184
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2018

Keywords

Crossrefs

Formula

Convolution inverse of A295788.
a(n) ~ 2^(5/4) * 3^(7/4) * Gamma(3/4)^7 * exp(2*Pi*n) / (Pi^5 * n^(3/4)). - Vaclav Kotesovec, Jun 03 2018
Showing 1-2 of 2 results.