cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295788 Coefficients in expansion of (E_10/E_2^10)^(1/4).

Original entry on oeis.org

1, -6, -41652, -11504904, -4378103178, -1652544433080, -700184843900712, -302796005909941632, -136251754253507319300, -62421509259448987324542, -29147951871527035454309160, -13787807362002100397282325912
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 12;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    (E10[x]/E2[x]^10)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) ~ -Pi^4 * exp(2*Pi*n) / (3^(7/4) * 2^(15/4) * Gamma(3/4)^7 * n^(5/4)). - Vaclav Kotesovec, Jun 03 2018

A299713 Coefficients in expansion of (E_2^14/E_14)^(1/4).

Original entry on oeis.org

1, -78, 51012, 6903624, 5954711646, 2161166435064, 1147125232110312, 525629755914843840, 262146899489557893876, 127930551245366132625258, 63840206028392497556267688, 31874918557295958327688144536, 16048808078655467936667484701336
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2018

Keywords

Crossrefs

Formula

Convolution inverse of A299712.
a(n) ~ 2^(7/4) * 3^(5/2) * Gamma(3/4)^9 * exp(2*Pi*n) / (Pi^(13/2) * n^(3/4)). - Vaclav Kotesovec, Jun 03 2018
Showing 1-2 of 2 results.