cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A033715 Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 6, 4, 0, 0, 4, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 4, 0, 6, 0, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 2, 8, 0, 0, 8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 4, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 12, 2, 0, 8, 0
Offset: 0

Views

Author

Keywords

Comments

Theta series of lattice C2 with Gram matrix [ 1, 0; 0, 2]. a(n) is nonzero if and only if n is in A002479. - Michael Somos, Dec 15 2011
Number 17 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by |a_4(n)| in Kassel and Reutenauer 2015. - Michael Somos, Jun 16 2015

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 114 Entry 8(iii).
  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 102, eq. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 19.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.24).
  • J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), this sequence (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 105); A[1] + 2*A[2] + 2*A[3]; /* Michael Somos, Aug 29 2014 */
  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,8,n)+d(3,8,n)-d(5,8,n)-d(7,8,n)),n=1..120)];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Sep 09 2012 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^4])^3 / (QPochhammer[ q] QPochhammer[ q^8])^2, {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (issquare(n) - issquare(2*n) + 2 * sum( i=1, sqrtint(n\2), issquare(n - 2*i^2))))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -2, d)))}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 2], n)[n])}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^8 + A)^-2, n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1,2]); Q.representation_number_list(104); # Peter Luschny, Jun 20 2014
    

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
Euler transform of period 8 sequence [ 2, -1, 2, -4, 2, -1, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^4))^3 / (eta(q) * eta(q^8))^2 in powers of q.
Coefficients in expansion of Sum_{i,j=-inf..inf} q^(i^2 + 2*j^2).
G.f. = s(2)^3*s(4)^3/(s(1)^2*s(8)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-2, n) * x^k / (1 - x^k) = 1 + 2 * Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(4*k)).
G.f.: theta_3(q) * theta_3(q^2) = Product_{k>0} (1 + x^(2*k)) * ((1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)))^2.
From Michael Somos, Oct 23 2006: (Start)
Moebius transform is period 8 sequence [ 2, 0, 2, 0, -2, 0, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - 3*u3) * (u1 - u2 - u3 + u6) - (u2 - 3*u6) * (u1 - 2*u2 - u3 + 2*u6). (End)
a(n) = 2 * A002325(n) unless n = 0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2012
From Michael Somos, Aug 29 2014: (Start)
Expansion of phi(q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.
a(2*n) = a(n). a(2*n + 1) = 2 * A113411(n). (End)
From Michael Somos, May 17 2015: (Start)
a(n) = A028572(4*n) = A133692(2*n) = A139093(8*n) = A226225(8*n) = A226240(4*n) = A242609(4*n) = A245572(4*n) / 3 = (-1)^floor((n + 1)/2) * A082564(n).
a(8*n + 5) = a(8*n + 7) = 0. a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = 4 * A033761(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(2^e) = 1, b(p^e) = e + 1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8). - Jianing Song, Sep 04 2018 [Corrected by Jeremy Lovejoy, Nov 12 2024]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/sqrt(2) = 2.221441... (A247719). - Amiram Eldar, Dec 16 2023

A093954 Decimal expansion of Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2004

Keywords

Comments

The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			1.11072073453959156175397...
From _Peter Bala_, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From _Peter Bala_, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 149.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 76, page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.

Crossrefs

Programs

  • Maple
    simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) );  # Peter Bala, Mar 09 2015
  • Mathematica
    RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009

Formula

Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=1} (-1)^(k+1)(1/(4*k - 3) + 1/(4*k - 1)).
Equals Product_{k=0..oo} (1 + (-1)^k/(2*k + 3)).
Equals Integral_{x=0..oo} 1/(2*x^2 + 1).
Equals Integral_{x=0..1} 1/((1 + x^2)*sqrt(1 - x^2)). (End)

A063448 Decimal expansion of Pi * sqrt(2).

Original entry on oeis.org

4, 4, 4, 2, 8, 8, 2, 9, 3, 8, 1, 5, 8, 3, 6, 6, 2, 4, 7, 0, 1, 5, 8, 8, 0, 9, 9, 0, 0, 6, 0, 6, 9, 3, 6, 9, 8, 6, 1, 4, 6, 2, 1, 6, 8, 9, 3, 7, 5, 6, 9, 0, 2, 2, 3, 0, 8, 5, 3, 9, 5, 6, 0, 6, 9, 5, 6, 4, 3, 4, 7, 9, 3, 0, 9, 9, 4, 7, 3, 9, 1, 0, 5, 7, 5, 3, 2, 6, 9, 3, 4, 7, 6, 4, 7, 6, 5, 2, 3
Offset: 1

Views

Author

Jason Earls, Jul 24 2001

Keywords

Comments

Hypotenuse of the right triangle with legs Pi and Pi. - Zak Seidov, May 04 2005
Circumference of the circumcircle of the unit square. - Jonathan Sondow, Nov 23 2017
Half-perimeter of the closed curve with implicit Cartesian equation x^2 + y^2 = abs(x) + abs(y). - Stefano Spezia, Oct 20 2020

Examples

			4.4428829381583662470158809900606936986146216893756902230853...
		

Crossrefs

Cf. A063447 (continued fraction), A093954, A153799, A193887, A244976, A247719.

Programs

  • Mathematica
    RealDigits[N[Pi*Sqrt[2], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
  • PARI
    \p 400; Pi * sqrt(2)
    
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b063448.txt", n, " ", d)) \\ Harry J. Smith, Aug 21 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula (1/8) P(1, 64, 12, (32, 0, 8, 0, 8, 0, -4, 0, -1, 0, -1, 0))
    from decimal import Decimal as dec, getcontext
    def BBPpisqrt2(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            twk = dec(12 * k)
            s += f * ( dec(32) / (twk + 1) + dec(8)  / (twk + 3)
                     + dec(8)  / (twk + 5) - dec(4)  / (twk + 7)
                     - dec(1)  / (twk + 9) - dec(1)  / (twk + 11))
            f /= g
        return s / dec(8)
    print(BBPpisqrt2(200))  # Peter Luschny, Nov 03 2023

Formula

Equals Gamma(1/4)*Gamma(3/4). - Jean-François Alcover, Nov 24 2014
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} log(1 + 1/x^4) dx.
Equals Integral_{x=0..oo} log(1 + 2/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/4)/(exp(x) + 1) dx.
Equals Integral_{x=0..2*Pi} 1/(cos(x)^2 + 1) dx = Integral_{x=0..2*Pi} 1/(sin(x)^2 + 1) dx. (End)
From Andrea Pinos, Jul 03 2023: (Start)
Equals (Product_{k=1..4} Gamma(k/8)*Gamma(1 - k/8))^(1/4).
General result: 2*Pi/(4*y)^(1/(2*y)) = (Product_{k=1..y} Gamma(k/(2*y))*Gamma(1 - k/(2*y)) )^(1/y). (End)
From Peter Bala, Oct 22 2023: (Start)
sqrt(2)*Pi = 4 + 8*Sum_{n >= 0} (-1)^n/(16*n^2 + 32*n + 15). See A141759.
In the following the Eisenstein summation convention is assumed: that is,
Sum_{n = -oo..oo} means Limit_{N -> oo} Sum_{n = -N..N}:
sqrt(2)*Pi = 4*Sum_{n = -oo..oo} (-1)^n/(4*n + 1).
More generally, it appears that for k >= 0, k not of the form 4*m + 1,
sqrt(2)*Pi = -sign(cos(Pi*(k - 3)/4)) * 4*(2^floor(k/2))*k! * Sum_{n = -oo..oo} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 2*k + 1)) (verified up to k = 50).
sqrt(2)*Pi = (2^4)*Sum_{n >= 0} (-1)^n * (2*n + 1)/((4*n + 1)*(4*n + 3)) = 512/105 - (2^6)*4!*Sum_{n >= 0} (-1)^n * (2*n + 3)/((4*n + 1)*(4*n + 3)*...*(4*n + 11)).
sqrt(2)*Pi = 4 + (2^3)*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*(4*n + 5)) = 1408/315 - (2^5)*5!*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*...*(4*n + 13)).
sqrt(2)*Pi = 16/3 - (2^4)*3!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*(4*n + 5)*(4*n + 7)) = 14848/3465 + (2^6)*7!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 15)). (End)
From Peter Bala, Nov 19 2023: (Start)
sqrt(2)*Pi = 512*Sum_{k >= 1} (-1)^(k+1) * k^2/((16*k^2 - 1)*(16*k^2 - 9)).
This is the case n = 1 of the more general result: for n >= 1,
sqrt(2)*Pi = (-1)^(n+1) * 2^(n+7) * (2*n)!/(2*n - 1) * Sum_{k >= 1} (-1)^(k+1) * k^2/( Product_{i = 0..n} (16*k^2 - (2*i+1)^2) ). Cf. A334422. (End)
Equals Integral_{x=-oo..oo} (x^2 + 1)/(x^4 + 1) dx. - Kritsada Moomuang, Jun 04 2025

Extensions

Edited by N. J. A. Sloane, May 05 2007
Corrected by Neven Juric, Apr 24 2008

A181049 Decimal expansion of (Pi/2 - log(1+sqrt(2)))/(2*sqrt(2)) = Sum_{k>=0} (-1)^k/(4k+3).

Original entry on oeis.org

2, 4, 3, 7, 4, 7, 7, 4, 7, 1, 9, 9, 6, 8, 0, 5, 2, 4, 1, 7, 9, 9, 7, 5, 0, 8, 3, 6, 3, 2, 3, 0, 2, 7, 1, 1, 0, 0, 1, 4, 8, 0, 0, 5, 4, 9, 9, 8, 6, 7, 7, 6, 5, 1, 4, 3, 6, 3, 1, 7, 0, 6, 2, 8, 2, 1, 4, 6, 9, 3, 4, 6, 8, 6, 3, 9, 2, 7, 1, 4, 8, 5, 8, 8, 0, 8, 1, 3, 3, 0, 2, 2, 7, 7, 8, 2, 3, 4, 0, 6, 3, 5, 6, 3, 4
Offset: 0

Views

Author

Jonathan D. B. Hodgson, Oct 01 2010, Oct 05 2010

Keywords

Comments

Let N be a positive integer divisible by 4. We have the asymptotic expansion 2*((Pi/2 - log(1 + sqrt(2)))/(2*sqrt(2)) - Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 3)) ~ 1/N - 1/N^2 - 3/N^3 + 11/N^4 + 57/N^5 - ..., where the sequence of coefficients [1, -1, -3, 11, 57, ...] is A212435. This follows from Borwein et al., Lemma 2 with f(x) = 1/x and then set x = N/4 and h = 3/4. An example is given below. Cf. A181048. - Peter Bala, Sep 23 2016

Examples

			0.2437477471996805241799750836323027110...
From _Peter Bala_, Sep 23 2016: (Start)
At N = 100000 the truncated series 2*Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 3) = 0.4874(8)5494(4)9936(4)048(24)99(444)67(625)6... to 32 digits. The bracketed numbers show where this decimal expansion differs from that of 2*A181049. The numbers 1, -1, -3, 11, 57, -361 must be added to the bracketed numbers to give the correct decimal expansion to 32 digits: 2*( Pi/2 - log(1+sqrt(2)))/(2*sqrt(2) ) = 0.4874(9)5494(3)9936(1)048(35)99(501)67(264)6.... (End)
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); [(Pi(C)/2 - Log(1+Sqrt(2)))/(2*Sqrt(2))]; // G. C. Greubel, Nov 28 2017
  • Mathematica
    First@ RealDigits[N[(Pi/2 - Log[1 + Sqrt@ 2])/(2 Sqrt@ 2), 105]] (* Michael De Vlieger, Oct 07 2015 *)
  • PARI
    default(realprecision, 106);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(4*n+3)))), "3..-2")) \\ Gheorghe Coserea, Oct 06 2015
    
  • PARI
    (Pi/2 - log(1+sqrt(2)))/(2*sqrt(2)) \\ G. C. Greubel, Nov 28 2017
    

Formula

Equals Integral_{x=0..1} (x^2 dx)/(1+x^4).
Equals (1/2) * Integral_{x = 0..Pi/4} sqrt(tan(x)) dx. Cf. A247719. - Peter Bala, Sep 23 2016
Equals Sum_{n >= 0} 2^(n-1)*n!/(Product_{k = 0..n} 4*k + 3) = Sum_{n >= 0} 2^(n-1)*n!/A008545(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(4*k+3)). - Peter Bala, Dec 01 2021
From Peter Bala, Mar 03 2024: (Start)
Continued fraction: 1/(3 + 3^2/(4 + 7^2/(4 + 11^2/(4 + 15^2/(4 + ... ))))) due to Euler.
Equals (1/3)*hypergeom([3/4, 1], [7/4], -1).
Gauss's continued fraction: 1/(3 + 3^2/(7 + 4^2/(11 + 7^2/(15 + 8^2/(19 + 11^2/(23 + 12^2/(27 + 15^2/(31 + 16^2/(35 + 19^2/(39 + ... )))))))))). (End)
Equals Integral_{x=1..oo, y=1..oo} 1/(x^4 + y^4) dx. - Vaclav Kotesovec, Jun 13 2024

A244976 Decimal expansion of Pi/(8*sqrt(2)).

Original entry on oeis.org

2, 7, 7, 6, 8, 0, 1, 8, 3, 6, 3, 4, 8, 9, 7, 8, 9, 0, 4, 3, 8, 4, 9, 2, 5, 6, 1, 8, 7, 8, 7, 9, 3, 3, 5, 6, 1, 6, 3, 4, 1, 3, 8, 5, 5, 5, 8, 5, 9, 8, 0, 6, 3, 8, 9, 4, 2, 8, 3, 7, 2, 2, 5, 4, 3, 4, 7, 7, 7, 1, 7, 4, 5, 6, 8, 7, 1, 7, 1, 1, 9, 4, 1, 0, 9, 5, 7, 9, 3, 3, 4, 2, 2, 7, 9, 7, 8, 2, 7, 3, 3, 5, 2, 1, 3
Offset: 0

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.277680183634897890438492561878793356163413855585980638942837225434777...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(8*Sqrt[2]), 10, 105] // First
  • PARI
    Pi/(8*sqrt(2)) \\ G. C. Greubel, Jul 05 2017

Formula

Equals Integral_{x=0..1} (x^2*(1 + x^2))/(1 + x^4)^2 dx.
Equals beta(3/2, 1/2)/(4*sqrt(2)), where 'beta' is Euler's beta function.
Equals Sum_{k >= 0} (-1)^k * (2*k + 1)/((4*k + 1)*(4*k + 3)). - Peter Bala, Sep 21 2016
Equals Integral_{x>=0} 1/(x^2 + 2)^2 dx. - Amiram Eldar, Nov 16 2021

A193887 Decimal expansion of Pi * sqrt(2)/8.

Original entry on oeis.org

5, 5, 5, 3, 6, 0, 3, 6, 7, 2, 6, 9, 7, 9, 5, 7, 8, 0, 8, 7, 6, 9, 8, 5, 1, 2, 3, 7, 5, 7, 5, 8, 6, 7, 1, 2, 3, 2, 6, 8, 2, 7, 7, 1, 1, 1, 7, 1, 9, 6, 1, 2, 7, 7, 8, 8, 5, 6, 7, 4, 4, 5, 0, 8, 6, 9, 5, 5, 4, 3, 4, 9, 1, 3, 7, 4
Offset: 0

Author

Alonso del Arte, Aug 07 2011

Keywords

Comments

This number arises as an addend in one way of giving the closed form of sum(k>=0, (-1)^k/(4*k + 1) ), for example, in Spiegel et al. (2009).

Examples

			0.55536036726979578088...
		

References

  • Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill (2009): p. 135, equation 21.17

Crossrefs

Programs

  • Magma
    R:= RealField(); Pi(R)*Sqrt(2)/8; // G. C. Greubel, Feb 02 2018
  • Mathematica
    RealDigits[(Pi Sqrt[2])/8, 10, 100][[1]]
  • PARI
    Pi*sqrt(2)/8 \\ G. C. Greubel, Feb 02 2018
    

Formula

Equals Pi/(4*sqrt(2)).
Equals Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)). - Peter Bala, Sep 21 2016
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 8) dx.
Equals Integral_{x=0..oo} 1/(8*x^2 + 1) dx.
Equals Integral_{x=0..oo} 1/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7) dx. (End)

A300727 Decimal expansion of the total harmonic distortion (THD) of the sawtooth signal filtered by a 2nd-order low-pass filter.

Original entry on oeis.org

1, 8, 1, 1, 4, 1, 6, 1, 3, 7, 9, 3, 8, 2, 9, 0, 0, 4, 0, 8, 0, 2, 1, 8, 1, 0, 5, 5, 8, 1, 3, 0, 1, 6, 7, 8, 4, 4, 3, 8, 9, 2, 8, 3, 5, 1, 5, 9, 5, 6, 3, 5, 3, 8, 9, 1, 1, 5, 5, 6, 0, 6, 0, 8, 6, 2, 6, 4, 1, 4, 1, 9, 5, 6, 3, 6, 7, 9, 2, 4, 7, 3, 1, 6, 9, 8, 0, 7, 9, 1, 7, 9, 2, 7, 4, 4, 1, 6, 2, 1, 2, 2, 4
Offset: 0

Author

Keywords

Comments

See formula (34) in Blagouchine & Moreau link.

Examples

			0.1811416137938290040802181055813016784438928351595635...
		

Crossrefs

Cf. A247719 (Pi/sqrt(2)), A300690, A300713, A300714.

Programs

  • MATLAB
    format long; sqrt(sqrt(pi*(cot(pi/sqrt(2))*coth(pi/sqrt(2))^2-cot(pi/sqrt(2))^2*coth(pi/sqrt(2))-cot(pi/sqrt(2))-coth(pi/sqrt(2)))/((cot(pi/sqrt(2))^2+coth(pi/sqrt(2))^2)*sqrt(2))+(1/3)*pi^2-1))
    
  • Maple
    evalf(sqrt(Pi*(cot(Pi/sqrt(2))*coth(Pi/sqrt(2))^2-cot(Pi/sqrt(2))^2*coth(Pi/sqrt(2))-cot(Pi/sqrt(2))-coth(Pi/sqrt(2)))/((cot(Pi/sqrt(2))^2+coth(Pi/sqrt(2))^2)*sqrt(2))+(1/3)*Pi^2-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi*(Cot[Pi/Sqrt[2]]*Coth[Pi/Sqrt[2]]^2-Cot[Pi/Sqrt[2]]^2*Coth[Pi/Sqrt[2]]-Cot[Pi/Sqrt[2]]-Coth[Pi/Sqrt[2]])/((Cot[Pi/Sqrt[2]]^2+Coth[Pi/Sqrt[2]]^2)*Sqrt[2])+(1/3)*Pi^2-1], 10, 120][[1]]
  • PARI
    s2=sqrt(2);
    A=Pi/s2;
    B=1+2/(exp(2*A)-1)
    C=1/tan(A);
    sqrt(Pi*(B^2*C-B*C^2-C-B)/((C^2+B^2)*s2) + Pi^2/3 - 1) \\ Charles R Greathouse IV, Mar 11 2018

Formula

Equals sqrt(Pi*(cot(Pi/sqrt(2))*coth(Pi/sqrt(2))^2-cot(Pi/sqrt(2))^2*coth(Pi/sqrt(2))-cot(Pi/sqrt(2))-coth(Pi/sqrt(2)))/((cot(Pi/sqrt(2))^2+coth(Pi/sqrt(2))^2)*sqrt(2))+(1/3)*Pi^2-1).

A193355 Decimal expansion of Pi/(2 + 2*sqrt(2)).

Original entry on oeis.org

6, 5, 0, 6, 4, 5, 1, 4, 2, 2, 8, 4, 2, 8, 6, 5, 0, 4, 2, 7, 6, 6, 1, 8, 8, 0, 3, 3, 9, 0, 5, 9, 5, 4, 0, 7, 2, 0, 8, 7, 2, 6, 1, 4, 5, 0, 0, 0, 2, 9, 2, 2, 0, 1, 0, 5, 5, 2, 2, 5, 5, 0, 7, 3, 2, 4, 3, 0, 9, 1, 9, 3, 4, 0, 6, 6, 3, 2, 4, 5, 5, 9, 7, 3, 6, 4, 6, 0, 5, 4, 7, 1, 1, 3, 2, 4, 0, 8, 4
Offset: 0

Author

Frank M Jackson, Jul 24 2011

Keywords

Comments

This is the first of the three angles (in radians) of a unique triangle that is right angled and where the angles are in a harmonic progression: Pi/(2+2*sqrt(2)) (this sequence), Pi/(2+sqrt(2)) (A193373), Pi/2 (A019669). The angles (in degrees) are approximately 37.279, 52.721, 90. The common difference between the denominators of the harmonic progression is sqrt(2).

Examples

			0.6506451422...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/(2 + 2*Sqrt(2)); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf(Pi/(2+2*sqrt(2)),120); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    N[Pi/(2 + 2*Sqrt[2]), 100]
    RealDigits[Pi/(2 + 2*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Sep 29 2018 *)
  • PARI
    default(realprecision,100); Pi/(2+2*sqrt(2))
    

Formula

Equals Pi/(2+2*sqrt(2)).
Equals Integral_{x=0..Pi/2} cos(x)^2/(1 + sin(x)^2) dx = Integral_{x=0..Pi/2} sin(x)^2/(1 + cos(x)^2) dx. - Amiram Eldar, Aug 16 2020
Equals 4*Sum_{k >= 0} (-1)^k/((4*k + 1)*(4*k + 2)*(4*k + 3)). - Peter Bala, Jul 15 2024
Equals Integral_{x=0..1} sqrt(1 - x^2)/(1 + x^2) dx. - Kritsada Moomuang, Jun 05 2025
Equals A247719 - A019669 = A000796*A268683. - R. J. Mathar, Jul 22 2025

A193373 Decimal expansion of Pi/(2 + sqrt(2)).

Original entry on oeis.org

9, 2, 0, 1, 5, 1, 1, 8, 4, 5, 1, 0, 6, 1, 0, 1, 1, 4, 9, 5, 4, 7, 0, 2, 8, 8, 8, 2, 4, 9, 1, 5, 6, 0, 3, 4, 8, 8, 9, 8, 5, 8, 5, 5, 4, 6, 8, 7, 2, 6, 0, 7, 0, 9, 4, 3, 2, 2, 4, 6, 7, 8, 8, 8, 2, 9, 5, 9, 9, 0, 0, 9, 7, 3, 6, 4, 7, 2, 0, 4, 3, 3, 4, 0, 3, 7, 1, 3, 5, 7, 9, 5, 9, 7, 3, 4, 4, 4, 9
Offset: 0

Author

M. F. Hasler, Jul 24 2011

Keywords

Examples

			0.92015118451061011495470288824915603488985855468726...
		

Crossrefs

Cf. A193355.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/(2 + Sqrt(2)); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf(Pi/(2+sqrt(2)),120); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    RealDigits[Pi/(2 + Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Sep 29 2018 *)
  • PARI
    default(realprecision, 99); vecextract(eval(Vec(Str(Pi/(2+sqrt(2))))),"3..")
    

Formula

From Amiram Eldar, May 08 2021: (Start)
Equals Integral_{x>=0} log(1 + 1/(1 + 2*x^2)) dx.
Equals Integral_{x=0..Pi} 1/(1 + csc(x)^2) dx. (End)
Equals A000796 - A247719 = A000796*A268682. - R. J. Mathar, Jul 22 2025

A380142 Decimal expansion of the imaginary part of (-1)^sqrt(i), where i is the imaginary unit.

Original entry on oeis.org

0, 8, 6, 2, 9, 5, 0, 4, 8, 1, 8, 0, 2, 3, 6, 2, 8, 1, 1, 2, 8, 5, 3, 4, 7, 5, 1, 8, 3, 7, 3, 2, 6, 5, 4, 0, 9, 6, 4, 9, 3, 8, 9, 3, 6, 6, 2, 6, 8, 0, 2, 5, 2, 5, 3, 0, 4, 9, 6, 6, 8, 7, 6, 1, 5, 4, 5, 5, 9, 3, 8, 8, 1, 4, 7, 4, 4, 1, 7, 1, 2, 4, 6, 0, 4, 7, 8, 4, 6
Offset: 0

Author

Hugo Pfoertner, Jan 23 2025

Keywords

Examples

			0.0862950481802362811285347518373265409649389366268...
		

Crossrefs

A380141 is the real part.
Cf. A247719.

Programs

  • Maple
    evalf[140](Im((-1)^sqrt(I)));  # Alois P. Heinz, Jan 23 2025
  • Mathematica
    First[RealDigits[Im[(-1)^Sqrt[I]], 10, 100, -1]] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    imag((-1)^sqrt(I))

Formula

Equals sin(Pi/sqrt(2))/exp(Pi/sqrt(2)).
Showing 1-10 of 14 results. Next