cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jonathan D. B. Hodgson

Jonathan D. B. Hodgson's wiki page.

Jonathan D. B. Hodgson has authored 16 sequences. Here are the ten most recent ones:

A181325 Primes that can be written as the sum of a Fibonacci number (A000045) and a triangular number (A000217).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 61, 67, 71, 79, 83, 89, 107, 113, 137, 139, 149, 157, 167, 173, 179, 191, 193, 199, 211, 223, 233, 239, 269, 277, 281, 311, 313, 331, 353, 359, 379, 383, 389, 397, 409, 419, 433, 443, 461, 467, 499, 509
Offset: 0

Author

Jonathan D. B. Hodgson, Oct 13 2010

Keywords

Examples

			29 is in the sequence since 29 is prime and 29 = 21 + 8 = T(6) + F(7); 43 is not in the sequence, despite being prime, since there exist no m and n such that 43 = T(m) + F(n).
		

Crossrefs

A181173 Primes whose base 5 representation does not contain a 0.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 59, 61, 67, 71, 73, 83, 89, 97, 107, 109, 113, 157, 163, 167, 173, 181, 191, 193, 197, 199, 211, 223, 233, 239, 241, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 359, 367, 373, 409, 419, 421, 431, 433
Offset: 1

Author

Jonathan D. B. Hodgson, Oct 08 2010

Keywords

Examples

			23 = 43 (base 5) which contains no 0.
		

Crossrefs

Cf. A082555.

Programs

  • Maple
    The following stores the first 200 digits of the sequence in K: for i from 1 to 200 do if i=i then x[i]:=convert(ithprime(i),base,5) else x[i]:=0 end if: end do: S:={}: for i from 1 to 200 do if evalb(`in`(0, x[i]))=false then S:=S union {i} fi od; for i from 1 to nops(S)do z[i]:=ithprime(S[i]) od: K:=[seq((z[i]),i=1..nops(S))];

A181285 Primes of the form 5^k - 4.

Original entry on oeis.org

3121, 78121, 30517578121, 710542735760100185871124267578121, 413590306276513837435704346034981426782906055450439453121
Offset: 1

Author

Jonathan D. B. Hodgson, Oct 12 2010

Keywords

Examples

			3121 = 5^5 - 4 is prime and therefore is in the sequence.
		

Crossrefs

Programs

  • Maple
    n:=1000: S:={}: for i from 1 to n do if type(5^i-4,prime)=true then S:=S union {5^i-4} end if od; S;
  • Mathematica
    Select[5^Range[90]-4,PrimeQ] (* Harvey P. Dale, Aug 23 2013 *)

A181172 Primes whose base 4 representation does not contain a 0.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 89, 101, 103, 107, 109, 127, 149, 151, 157, 167, 173, 181, 191, 223, 229, 233, 239, 251, 347, 349, 359, 367, 373, 379, 383, 409, 421, 431, 439, 443, 479, 487, 491, 503, 509, 599, 601, 607, 613, 617, 619
Offset: 1

Author

Jonathan D. B. Hodgson, Oct 08 2010

Keywords

Comments

This sequence contains all Mersenne primes (i.e. this is a supersequence of A000668). - Iain Fox, Dec 25 2017

Examples

			53 = 311 (base 4), which contains no 0.
		

Crossrefs

Cf. A082555, A000668 (subsequence).
Cf. A073779 (number of 0's in base-3 representation of n-th prime), A181173 (primes whose base 5 representation does not contain a 0). - Klaus Brockhaus, Oct 10 2010

Programs

  • Magma
    [ p: p in PrimesUpTo(620) | not exists(t){d: d in Intseq(p, 4) | d eq 0 } ]; // Klaus Brockhaus, Oct 10 2010
    
  • Maple
    The following code will store the first 200 terms into a sequence K. for i from 1 to 200 do if i=i then x[i]:=convert(ithprime(i),base,4) else x[i]:=0 end if: end do: S:={}: for i from 1 to 200 do if evalb(`in`(0, x[i]))=false then S:=S union {i} fi od; for i from 1 to nops(S)do z[i]:=ithprime(S[i]) od: K:=[seq((z[i]),i=1..nops(S))];
    # Alternative:
    select(t -> isprime(t) and not has(convert(t,base,4),0), [2,seq(i,i=3..10^4,2)]); # Robert Israel, Dec 24 2017
  • Mathematica
    Select[Prime@ Range@ 120, DigitCount[#, 4, 0] == 0 &] (* Michael De Vlieger, Dec 24 2017 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if(!setsearch(Set(digits(p, 4)), 0), print1(p, ", "))) \\ Iain Fox, Dec 25 2017

A181122 Decimal expansion of Sum_{k>=0} (-1)^k/(5k+1).

Original entry on oeis.org

8, 8, 8, 3, 1, 3, 5, 7, 2, 6, 5, 1, 7, 8, 8, 6, 3, 8, 0, 4, 0, 7, 5, 5, 2, 2, 7, 0, 2, 0, 3, 7, 9, 3, 4, 6, 2, 7, 8, 1, 1, 0, 8, 3, 0, 7, 7, 5, 4, 5, 8, 1, 7, 1, 2, 0, 5, 9, 7, 0, 6, 8, 2, 0, 8, 4, 7, 6, 9, 9, 0, 6, 9, 6, 4, 0, 4, 2, 3, 8, 0, 4, 1, 5, 8, 1, 9, 7, 3, 6, 7, 1, 9, 2, 4, 2, 0, 4, 5, 9, 7, 0, 7, 6, 6
Offset: 0

Author

Jonathan D. B. Hodgson, Oct 05 2010

Keywords

Examples

			0.88831357265178863804075522702037934627811083077545817120597...
		

Programs

  • Maple
    (int(1/(1+x^5),x=0..1));
    evalf(LerchPhi(-1,1,1/5)/5) ; # R. J. Mathar, Oct 16 2011
  • Mathematica
    (Sqrt[8 + 8/Sqrt[5]]*Pi + 2*Sqrt[5]*ArcCoth[3/Sqrt[5]] + Log[16])/20 // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    default(realprecision, 106);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(5*n+1)))), "3..-2")) \\ Gheorghe Coserea, Oct 06 2015

Formula

Sum_{k>=0} (-1)^k/(5k+1) = Integral_{x=0..1}dx/(1+x^5) = (1/10)*sqrt(10-2*sqrt(5))*arctan((3/4)*sqrt(10-2*sqrt(5)) + (1/4)*sqrt(10-2*sqrt(5))*sqrt(5)) + (1/20)*sqrt(10-2*sqrt(5))*arctan(-(1/4)*sqrt(10-2*sqrt(5)) + (1/4)*sqrt(10-2*sqrt(5))*sqrt(5)) + (1/20)*sqrt(10-2*sqrt(5))*sqrt(5)*arctan(-(1/4)*sqrt(10-2*sqrt(5)) + (1/4)*sqrt(10-2*sqrt(5))*sqrt(5)) + (1/20)*log(2)*sqrt(5) + (1/5)*log(2) - (1/20)*log(7-3*sqrt(5))*sqrt(5).
Equals Pi*sqrt(phi)/5^(5/4) + log(phi)/sqrt(5) + log(2)/5, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 01 2015
From Peter Bala, Feb 19 2024: (Start)
Equals (1/2)*Sum_{n >= 0} n!*(5/2)^n/(Product_{k = 0..n} 5*k + 1) = (1/2)*Sum_{n >= 0} n!*(5/2)^n/A008548(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(5*k + 1)).
Continued fraction: 1/(1 + 1^2/(5 + 6^2/(5 + 11^2/(5 + ... + (5*n + 1)^2/(5 + ... ))))).
The slowly converging series representation Sum_{n >= 0} (-1)^n/(5*n + 1) for the constant can be accelerated to give the following faster converging series:
1/2 + (5/2)*Sum_{n >= 0} (-1)^n/((5*n + 1)(5*n + 6)) and
17/24 + (25/2)*Sum_{n >= 0} (-1)^n/((5*n + 1)(5*n + 6)*(5*n + 11)).
These two series are the cases r = 1 and r = 2 of the general result: for r >= 0, the constant equals
C(r) + ((5/2)^r)*r!*Sum_{n >= 0} (-1)^n/((5*n + 1)*(5*n + 6)*...*(5*n + 5*r + 1)), where C(r) is the rational number (1/2)*Sum_{k = 0..r-1} (5/2)^k*k!/(1*6*11*...*(5*k + 1)). The general result can be proved by the WZ method as described in Wilf. (End)
From Peter Bala, Mar 03 2024: (Start)
Equals hypergeom([1/5, 1], [6/5], -1).
Gauss's continued fraction: 1/(1 + 1^2/(6 + 5^2/(11 + 6^2/(16 + 10^2/(21 + 11^2/(26 + 15^2/(31 + 16^2/(36 + 20^2/(41 + 21^2/(46 + ... )))))))))). (End)

A180658 Decimal expansion of the value of the continued fraction 2+2^2/(2^3+2^4/(2^5+2^6...

Original entry on oeis.org

2, 4, 7, 1, 0, 1, 2, 8, 5, 9, 6, 9, 7, 9, 0, 9, 7, 4, 8, 5, 9, 5, 7, 8, 6, 2, 3, 9, 8, 8, 6, 8, 6, 2, 0, 6, 1, 4, 8, 7, 7, 7, 0, 2, 0, 0, 3, 3, 8, 8, 7, 5, 4, 4, 3, 7, 5, 1, 8, 8, 2, 6, 1, 5, 9, 8, 0, 8, 7, 3, 5, 9, 8, 1, 2, 7, 9, 7, 6, 7, 5, 3, 8, 2, 8, 6, 6, 2, 7, 1, 7, 0, 1, 1, 2, 3, 1, 7, 7, 7, 7, 0, 0, 0, 8
Offset: 1

Author

Jonathan D. B. Hodgson, Sep 15 2010

Keywords

Examples

			2.4710128596979097485957862398868620614877702... [From _R. J. Mathar_, Sep 19 2010]
		

Extensions

More digits from R. J. Mathar, Sep 19 2010

A180659 Decimal expansion of the continued fraction F(0)+F(1)/(F(2)+F(3)/(F(4)+F(5)/ ... where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

6, 4, 1, 6, 6, 0, 0, 0, 1, 0, 2, 1, 4, 5, 1, 9, 9, 9, 8, 5, 3, 6, 6, 9, 9, 4, 9, 1, 9, 5, 5, 9, 4, 0, 2, 3, 4, 9, 9, 1, 3, 1, 5, 4, 3, 1, 3, 9, 1, 1, 9, 4, 9, 3, 7, 3, 8, 0, 6, 7, 0, 3, 3, 1, 8, 1, 5, 0, 6, 0, 5, 9, 0, 7, 7, 8, 0, 6, 7, 7, 2, 5, 1, 9, 6, 0, 6, 1, 9, 6, 7, 9, 0, 4, 4, 5, 6, 2, 7, 7, 8, 9, 6, 9, 1
Offset: 0

Author

Jonathan D. B. Hodgson, Sep 15 2010

Keywords

Examples

			0.6416600010214519998536699491955...
		

Extensions

Offset set to 0 by R. J. Mathar, Sep 23 2010

A180660 Decimal expansion of the constant whose continued fraction representation is [Phi^0; Phi^1, Phi^2, Phi^3, Phi^4, ...] where Phi is the golden ratio (A001622) and the exponents cycle through all nonnegative integers.

Original entry on oeis.org

1, 5, 0, 7, 7, 7, 8, 5, 7, 6, 8, 9, 4, 6, 3, 1, 2, 0, 7, 6, 8, 6, 6, 1, 6, 7, 3, 4, 7, 2, 8, 9, 9, 9, 3, 7, 8, 0, 7, 8, 6, 3, 4, 9, 9, 9, 1, 2, 4, 0, 2, 4, 7, 3, 4, 1, 7, 9, 8, 2, 5, 1, 7, 7, 3, 2, 5, 5, 5, 0, 6, 4, 7, 6, 2, 4, 0, 2, 0, 8, 3, 8, 1, 6, 2, 4, 4, 3, 1, 4, 3, 6, 6, 7, 0, 0, 3, 5, 6, 8, 1, 7, 3, 0, 3
Offset: 1

Author

Jonathan D. B. Hodgson, Sep 15 2010

Keywords

Examples

			1.50777857...
		

Crossrefs

Extensions

More digits from R. J. Mathar, Sep 19 2010

A180661 Decimal expansion of the constant whose continued fraction representation is [Pi^0; Pi^1, Pi^2, Pi^3, Pi^4, ...] where Pi is the ratio of a circle's circumference to its diameter (A000796) and the exponents cycle through all nonnegative integers.

Original entry on oeis.org

1, 3, 0, 8, 3, 9, 6, 0, 2, 6, 5, 4, 2, 5, 3, 9, 2, 8, 3, 7, 3, 8, 3, 7, 1, 5, 5, 6, 6, 2, 2, 6, 3, 1, 4, 0, 5, 4, 7, 8, 5, 7, 1, 7, 1, 1, 5, 0, 4, 7, 3, 6, 2, 5, 7, 0, 3, 7, 1, 2, 8, 6, 7, 6, 1, 1, 2, 5, 7, 6, 8, 0, 9, 1, 2, 7, 5, 8, 2, 1, 5, 6, 8, 6, 5, 3, 5, 5, 5, 8, 9, 2, 6, 8, 0, 7, 7, 2, 4, 0, 3, 1, 3, 9, 2
Offset: 1

Author

Jonathan D. B. Hodgson, Sep 15 2010

Keywords

Examples

			1.30839602...
		

Crossrefs

Extensions

More digits from R. J. Mathar, Sep 19 2010

A181050 Decimal expansion of the constant 1+3/(5+7/(9+11/(13+...))), using all odd integers in this generalized continued fraction.

Original entry on oeis.org

1, 5, 2, 4, 9, 6, 5, 3, 4, 4, 4, 1, 7, 8, 9, 4, 9, 1, 2, 8, 2, 1, 2, 2, 3, 0, 9, 4, 0, 6, 2, 5, 5, 6, 2, 3, 2, 4, 6, 8, 4, 6, 0, 4, 2, 9, 9, 9, 9, 4, 6, 8, 1, 1, 5, 3, 6, 9, 2, 1, 1, 5, 0, 9, 1, 2, 8, 2, 6, 8, 4, 4, 7, 6, 2, 0, 5, 0, 1, 7, 4, 7, 9, 7, 5, 6, 4, 9, 8, 4, 9, 4, 4, 3, 5, 0, 1, 3, 5, 4, 4, 8, 6, 9, 4
Offset: 1

Author

Jonathan D. B. Hodgson, Oct 01 2010

Keywords

Comments

The (simple) continued fraction of this constant is [1;1,1,9,1,1,17,1,1,25,...], every 3rd term being of the form 8n+1.

Examples

			1.524965344417894912821223094...
		

Crossrefs

Cf. A113011.

Programs

  • Maple
    r:= (n, i)-> n+ `if`(i<1, 1, (n+2)/r(n+4, i-1)):
    s:= convert(evalf(r(1, 80)/10, 130), string):
    seq(parse(s[n+1]), n=1..120); # Alois P. Heinz, Oct 16 2011
  • Mathematica
    digits = 105; f[n_] := f[n] = Fold[#2 + (#2+2)/#1 &, 4*n+1, Range[4*n-3, 1, -4] ] // RealDigits[#, 10, digits]& // First; f[digits]; f[n = 2*digits]; While[f[n] != f[n/2], n = 2*n]; f[n] (* Jean-François Alcover, Feb 21 2014 *)