A033453 "INVERT" transform of squares A000290.
1, 5, 18, 63, 221, 776, 2725, 9569, 33602, 117995, 414345, 1454992, 5109273, 17941453, 63002258, 221235399, 776878533, 2728045592, 9579660701, 33639430153, 118126444802, 414806579603, 1456612858961, 5114964721440, 17961439747441, 63072442405845, 221481854849938, 777743974335503, 2731084630047981
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,1).
Crossrefs
Cf. A105495.
Programs
-
Maple
read transforms; [seq(n^2,n=1..50)]; INVERT(%);
-
Mathematica
nn=20;a=(x+x^2)/(1-x)^3;Drop[CoefficientList[Series[1/(1-a),{x,0,nn}],x],1] (* Geoffrey Critzer, Aug 31 2012*)
-
PARI
Vec((1 + x) / (1 - 4*x + 2*x^2 - x^3) + O(x^30)) \\ Colin Barker, Mar 19 2019
Formula
G.f.: (1 + x) / (1 - 4*x + 2*x^2 - x^3).
a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) for n>2. - Colin Barker, Mar 19 2019
Comments