A300452
Logarithmic transform of the cubes A000578.
Original entry on oeis.org
0, 1, 7, 5, -146, -351, 9936, 51421, -1394000, -12844287, 328407400, 4874111901, -115361217696, -2607873466511, 55768370301112, 1866984952934445, -34886452149332864, -1720211491314549375, 26716801597874981064, 1979492625918149729437, -23490293022369696366560, -2777285149336544358953679
Offset: 0
E.g.f.: A(x) = x/1! + 7*x^2/2! + 5*x^3/3! - 146*x^4/4! - 351*x^5/5! + 9936*x^6/6! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..408
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Logarithmic Transform
- Eric Weisstein's World of Mathematics, Cubic Number
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->i^3)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 06 2018
-
nmax = 21; CoefficientList[Series[Log[1 + Exp[x] x (1 + 3 x + x^2)], {x, 0, nmax}], x] Range[0, nmax]!
A274805
The logarithmic transform of sigma(n).
Original entry on oeis.org
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 1..451
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
Cf.
A112005,
A007553,
A062740,
A007447,
A062738,
A033464,
A116652,
A002031,
A003704,
A003707,
A155585,
A000142,
A226968.
-
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
-
a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
-
N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017
A300455
Logarithmic transform of the triangular numbers A000217.
Original entry on oeis.org
0, 1, 2, -1, -11, 19, 201, -764, -7426, 52137, 448435, -5377604, -38712486, 777663613, 4258812299, -149524753650, -505685566184, 36733876797025, 30910872539763, -11174584391207360, 25170998506744790, 4101787001153848461, -24862093152821214653, -1776483826032814964966
Offset: 0
E.g.f.: A(x) = x/1! + 2*x^2/2! - x^3/3! - 11*x^4/4! + 19*x^5/5! + 201*x^6/6! - 764*x^7/7! - 7426*x^8/8! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Logarithmic Transform
- Eric Weisstein's World of Mathematics, Triangular Number
- Index to sequences related to polygonal numbers
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->i*(i+1)/2)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 06 2018
-
nmax = 23; CoefficientList[Series[Log[1 + Exp[x] x (x + 2)/2], {x, 0, nmax}], x] Range[0, nmax]!
A306325
Expansion of e.g.f. log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)).
Original entry on oeis.org
0, 1, 15, 35, -650, -5251, 83376, 1623439, -19261584, -836109351, 5365104400, 636771444011, 561938325312, -661384866976523, -7128491581221360, 879709224738485415, 21742632225425026816, -1413667730904479933647, -64871991410092201623024, 2556051301724027073500035, 212244727356899863738042560
Offset: 0
-
a:=series(log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)),x=0,21): seq(n!*coeff(a, x, n),n=0..20); # Paolo P. Lava, Mar 26 2019
-
nmax = 20; CoefficientList[Series[Log[1 + Exp[x] x (1 + 7 x + 6 x^2 + x^3)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = n^4 - Sum[Binomial[n, k] (n - k)^4 k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 20}]
A320939
a(n) = n! * [x^n] log(1 + Sum_{k>=1} k^n*x^k/k!).
Original entry on oeis.org
0, 1, 3, 5, -650, -46071, 3121776, 5538166381, 3146076001776, -10459815889305231, -100694615309371571840, -193538025548431984737219, 38912028315765820944424730112, 2554132880645627969533690819801657, -106074951996903194289368162206783509504
Offset: 0
-
seq(coeff(series(factorial(n)*log(1+add(k^n*x^k/factorial(k),k=1..n)),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 28 2018
-
Table[n! SeriesCoefficient[Log[1 + Sum[k^n x^k/k!, {k, 1, n}]], {x, 0, n}], {n, 0, 14}]
A337824
a(0) = 0; a(n) = n^2 - (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (n-k))^2 * k * a(k).
Original entry on oeis.org
0, 1, 2, -15, 16, 2505, -60264, -606515, 131316928, -4813100271, -339213768200, 62401665573621, -2075963863814928, -745086903175541927, 140250562903680456332, 808225064553580739325, -5491409141464496462591744, 1013058261721909845376508449, 127689148764914765889971316600
Offset: 0
-
S:= series(log(1+x*BesselI(0,2*sqrt(x))),x,31):
0,seq(coeff(S,x,n)*(n!)^2, n=1..30); # Robert Israel, Jan 07 2024
-
a[0] = 0; a[n_] := a[n] = n^2 - (1/n) * Sum[(Binomial[n, k] (n - k))^2 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Log[1 + x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
A308484
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} j^k * x^j/j!).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, -1, 0, 1, 7, -1, -2, 0, 1, 15, 5, -26, 9, 0, 1, 31, 35, -146, 29, 6, 0, 1, 63, 149, -650, -351, 756, -155, 0, 1, 127, 539, -2642, -5251, 9936, -1793, 232, 0, 1, 255, 1805, -10346, -46071, 83376, 51421, -45744, 3969, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 7, 15, 31, ...
0, -1, -1, 5, 35, 149, ...
0, -2, -26, -146, -650, -2642, ...
0, 9, 29, -351, -5251, -46071, ...
0, 6, 756, 9936, 83376, 559656, ...
0, -155, -1793, 51421, 1623439, 28735405, ...
-
T[n_, k_] := T[n, k] = n^k - Sum[Binomial[n-1,j] * j^k * T[n-j,k], {j,1,n-1}]; Table[T[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
A320255
a(n) = n! * [x^n] log(1 + exp(x)*(x + (n/2 - 1)*x^2)).
Original entry on oeis.org
0, 1, 1, -1, -26, 39, 3666, -7400, -1488416, 3802113, 1322570530, -4095154284, -2187371499312, 7964242253473, 6052757424558586, -25343867475914910, -25988018018090461664, 123032891453320498449, 163684285184147641156098, -864557405968781387651984, -1448111703094244548802632160
Offset: 0
-
Table[n! SeriesCoefficient[Log[1 + Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]
A336183
a(n) = n^2 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^2.
Original entry on oeis.org
1, 5, 23, 154, 1389, 15636, 211231, 3329264, 59969097, 1215233380, 27362096211, 677690995488, 18310602210445, 535964033279780, 16894811428737495, 570603293774677696, 20556251540382371217, 786832900592755991364, 31889277719673937849243, 1364231113649221829763200
Offset: 1
-
a[n_] := a[n] = n^2 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
nmax = 20; CoefficientList[Series[-Log[1 - Exp[x] x (1 + x)], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Showing 1-9 of 9 results.
Comments