cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346750 Expansion of e.g.f. log( 1 + x^2 * exp(x) / 2 ).

Original entry on oeis.org

0, 0, 1, 3, 3, -20, -135, -189, 3598, 33300, 39105, -2164085, -23831214, -5268042, 3038813869, 36984819795, -59749871880, -8207734934984, -105142191601887, 482549202944307, 37754304692254030, 489494512692093090, -4466445363328684659, -271973408844483808517
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + x^2 Exp[x]/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = Binomial[n, 2] - (1/n) Sum[Binomial[n, k] Binomial[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0; a(n) = binomial(n,2) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * binomial(n-k,2) * k * a(k).
a(n) = n! * Sum_{k=1..floor(n/2)} (-1)^(k-1) * k^(n-2*k-1)/(2^k * (n-2*k)!). - Seiichi Manyama, Dec 14 2023

A320255 a(n) = n! * [x^n] log(1 + exp(x)*(x + (n/2 - 1)*x^2)).

Original entry on oeis.org

0, 1, 1, -1, -26, 39, 3666, -7400, -1488416, 3802113, 1322570530, -4095154284, -2187371499312, 7964242253473, 6052757424558586, -25343867475914910, -25988018018090461664, 123032891453320498449, 163684285184147641156098, -864557405968781387651984, -1448111703094244548802632160
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the logarithmic transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Log[1 + Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]
Showing 1-2 of 2 results.