cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A279636 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Examples

			Square array A(n,k) begins:
:   1,    1,    1,     1,      1,       1,        1, ...
:   1,    1,    1,     1,      1,       1,        1, ...
:   2,    3,    5,     9,     17,      33,       65, ...
:   5,   10,   22,    52,    130,     340,      922, ...
:  15,   41,  125,   413,   1445,    5261,    19685, ...
:  52,  196,  836,  3916,  19676,  104116,   572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
		

Crossrefs

Rows n=0+1,2 give: A000012, A000051.
Main diagonal gives A279644.
Cf. A145460.

Programs

  • Maple
    egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
    A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).

A033464 Logarithmic (or "LOG") transform of squares A000290.

Original entry on oeis.org

1, 3, -1, -26, 29, 756, -1793, -45744, 189513, 4700260, -30515629, -730341600, 6948349069, 159130156836, -2123506814505, -46081244842304, 838034409016721, 17029766318842692, -414549408916313189, -7774211453384941440, 251026027696302116181, 4263756050277024153028
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    logtr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end; n->b(n+1) end: a:= logtr(n-> n^2): seq(a(n), n=0..25); # Alois P. Heinz, Sep 14 2008
  • Mathematica
    With[{nn=30},CoefficientList[Series[(Exp[x](1+3x+x^2))/(1+Exp[x]x(1+x)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 03 2019 *)

Formula

E.g.f.: exp(x)*(1 + 3*x + x^2)/(1 + exp(x)*x*(1 + x)). - Ilya Gutkovskiy, Mar 06 2018

A279361 Exponential transform of the triangular numbers.

Original entry on oeis.org

1, 1, 4, 16, 80, 471, 3127, 23059, 186468, 1635265, 15422471, 155388399, 1663294756, 18826525771, 224434810797, 2808247979611, 36770685485408, 502505495269521, 7150461569849395, 105723461155720879, 1621191824611307436, 25738508587975433251
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 10 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 16*x^3/3! + 80*x^4/4! + 471*x^5/5! + 3127*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j*(j+1)/2*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 11 2016
  • Mathematica
    Range[0, 23]! CoefficientList[Series[Exp[Exp[x] x (x + 2)/2], {x, 0, 23}], x]

Formula

E.g.f.: exp(exp(x)*x*(x+2)/2).

A279358 Exponential transform of the cubes A000578.

Original entry on oeis.org

1, 1, 9, 52, 413, 3916, 41077, 481384, 6198425, 86430160, 1296040841, 20763245944, 353272341061, 6353672109760, 120315348389069, 2390488408994536, 49682962883210033, 1077292416660660736, 24313317132393295633, 569937590287796925784, 13850459183086300341341
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 10 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x/1! + 9*x^2/2! + 52*x^3/3! + 413*x^4/4! + 3916*x^5/5! + 41077*x^6/6! + ...
		

Crossrefs

Column k=3 of A279636.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^3*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 11 2016
  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[Exp[x] (x + 3 x^2 + x^3)], {x, 0, 20}], x]

Formula

E.g.f.: exp(exp(x)*(x+3*x^2+x^3)).

A308861 Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)).

Original entry on oeis.org

1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + x)*exp(x)))) \\ Michel Marcus, Mar 10 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} k^2*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k).
a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 3*r + r^2)), where r = A201941 = 0.44413022882396659058546632949098466707932096994213775695918... is the root of the equation exp(r)*r*(1 + r) = 1. - Vaclav Kotesovec, Jun 29 2019

A337591 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k^3 * a(n-k).

Original entry on oeis.org

1, 1, 6, 51, 760, 15545, 428256, 15043483, 653049664, 34204348305, 2118834917200, 152834879685851, 12670536337934256, 1194143629239156505, 126753440317516749660, 15031687739886065433375, 1977667235694725269563136, 286890421090357737699794209, 45637300134026406622214264592
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Exp[x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x * BesselI(0,2*sqrt(x))).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} n^2 * x^n / (n!)^2).

A320254 a(n) = n! * [x^n] exp(exp(x)*(x + (n/2 - 1)*x^2)).

Original entry on oeis.org

1, 1, 3, 16, 125, 1291, 16177, 241207, 4153193, 81082225, 1770989921, 42763506919, 1131353484637, 32541516492811, 1011058416700529, 33745374949198231, 1204107124715441873, 45741398365345761073, 1843069565594762478145, 78511973999963036415967, 3525468554804288803649381
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the exponential transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]

A336183 a(n) = n^2 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^2.

Original entry on oeis.org

1, 5, 23, 154, 1389, 15636, 211231, 3329264, 59969097, 1215233380, 27362096211, 677690995488, 18310602210445, 535964033279780, 16894811428737495, 570603293774677696, 20556251540382371217, 786832900592755991364, 31889277719673937849243, 1364231113649221829763200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = n^2 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
    nmax = 20; CoefficientList[Series[-Log[1 - Exp[x] x (1 + x)], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: -log(1 - exp(x) * x * (1 + x)).
E.g.f.: -log(1 - Sum_{k>=1} k^2 * x^k / k!).
a(n) ~ (n-1)! / r^n, where r = A201941 = 0.444130228823966590585466329490984667... is the root of the equation exp(r)*r*(1+r) = 1. - Vaclav Kotesovec, Jul 11 2020

A336961 Expansion of e.g.f. exp(x * (2 + x) * exp(x)).

Original entry on oeis.org

1, 2, 10, 56, 384, 3022, 26626, 258624, 2734360, 31168682, 380196414, 4932536908, 67717987948, 979613124414, 14877703575130, 236469561581768, 3922587278751504, 67743812585483218, 1215417753459838198, 22609895367286957572, 435341977596130683316
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2020

Keywords

Comments

Exponential transform of the oblong numbers (A002378).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x (2 + x) Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] k (k + 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(x * (2 + x) * exp(x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * k * (k + 1) * a(n-k).
Showing 1-10 of 12 results. Next