A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A279636
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, 65, ...
: 5, 10, 22, 52, 130, 340, 922, ...
: 15, 41, 125, 413, 1445, 5261, 19685, ...
: 52, 196, 836, 3916, 19676, 104116, 572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
Columns k=0-10 give:
A000110,
A000248,
A033462,
A279358,
A279637,
A279638,
A279639,
A279640,
A279641,
A279642,
A279643.
-
egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
A033464
Logarithmic (or "LOG") transform of squares A000290.
Original entry on oeis.org
1, 3, -1, -26, 29, 756, -1793, -45744, 189513, 4700260, -30515629, -730341600, 6948349069, 159130156836, -2123506814505, -46081244842304, 838034409016721, 17029766318842692, -414549408916313189, -7774211453384941440, 251026027696302116181, 4263756050277024153028
Offset: 0
-
logtr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end; n->b(n+1) end: a:= logtr(n-> n^2): seq(a(n), n=0..25); # Alois P. Heinz, Sep 14 2008
-
With[{nn=30},CoefficientList[Series[(Exp[x](1+3x+x^2))/(1+Exp[x]x(1+x)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 03 2019 *)
A279361
Exponential transform of the triangular numbers.
Original entry on oeis.org
1, 1, 4, 16, 80, 471, 3127, 23059, 186468, 1635265, 15422471, 155388399, 1663294756, 18826525771, 224434810797, 2808247979611, 36770685485408, 502505495269521, 7150461569849395, 105723461155720879, 1621191824611307436, 25738508587975433251
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 16*x^3/3! + 80*x^4/4! + 471*x^5/5! + 3127*x^6/6! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..519
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Triangular Number
- Index to sequences related to polygonal numbers
-
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j*(j+1)/2*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 11 2016
-
Range[0, 23]! CoefficientList[Series[Exp[Exp[x] x (x + 2)/2], {x, 0, 23}], x]
A279358
Exponential transform of the cubes A000578.
Original entry on oeis.org
1, 1, 9, 52, 413, 3916, 41077, 481384, 6198425, 86430160, 1296040841, 20763245944, 353272341061, 6353672109760, 120315348389069, 2390488408994536, 49682962883210033, 1077292416660660736, 24313317132393295633, 569937590287796925784, 13850459183086300341341
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 9*x^2/2! + 52*x^3/3! + 413*x^4/4! + 3916*x^5/5! + 41077*x^6/6! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..479
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Cubic Number
-
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^3*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 11 2016
-
Range[0, 20]! CoefficientList[Series[Exp[Exp[x] (x + 3 x^2 + x^3)], {x, 0, 20}], x]
A308861
Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)).
Original entry on oeis.org
1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + x)*exp(x)))) \\ Michel Marcus, Mar 10 2022
A337591
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k^3 * a(n-k).
Original entry on oeis.org
1, 1, 6, 51, 760, 15545, 428256, 15043483, 653049664, 34204348305, 2118834917200, 152834879685851, 12670536337934256, 1194143629239156505, 126753440317516749660, 15031687739886065433375, 1977667235694725269563136, 286890421090357737699794209, 45637300134026406622214264592
Offset: 0
-
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
A320254
a(n) = n! * [x^n] exp(exp(x)*(x + (n/2 - 1)*x^2)).
Original entry on oeis.org
1, 1, 3, 16, 125, 1291, 16177, 241207, 4153193, 81082225, 1770989921, 42763506919, 1131353484637, 32541516492811, 1011058416700529, 33745374949198231, 1204107124715441873, 45741398365345761073, 1843069565594762478145, 78511973999963036415967, 3525468554804288803649381
Offset: 0
-
Table[n! SeriesCoefficient[Exp[Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]
A336183
a(n) = n^2 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^2.
Original entry on oeis.org
1, 5, 23, 154, 1389, 15636, 211231, 3329264, 59969097, 1215233380, 27362096211, 677690995488, 18310602210445, 535964033279780, 16894811428737495, 570603293774677696, 20556251540382371217, 786832900592755991364, 31889277719673937849243, 1364231113649221829763200
Offset: 1
-
a[n_] := a[n] = n^2 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
nmax = 20; CoefficientList[Series[-Log[1 - Exp[x] x (1 + x)], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A336961
Expansion of e.g.f. exp(x * (2 + x) * exp(x)).
Original entry on oeis.org
1, 2, 10, 56, 384, 3022, 26626, 258624, 2734360, 31168682, 380196414, 4932536908, 67717987948, 979613124414, 14877703575130, 236469561581768, 3922587278751504, 67743812585483218, 1215417753459838198, 22609895367286957572, 435341977596130683316
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[x (2 + x) Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] k (k + 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
Showing 1-10 of 12 results.
Comments