A279636
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, 65, ...
: 5, 10, 22, 52, 130, 340, 922, ...
: 15, 41, 125, 413, 1445, 5261, 19685, ...
: 52, 196, 836, 3916, 19676, 104116, 572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
Columns k=0-10 give:
A000110,
A000248,
A033462,
A279358,
A279637,
A279638,
A279639,
A279640,
A279641,
A279642,
A279643.
-
egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
A300452
Logarithmic transform of the cubes A000578.
Original entry on oeis.org
0, 1, 7, 5, -146, -351, 9936, 51421, -1394000, -12844287, 328407400, 4874111901, -115361217696, -2607873466511, 55768370301112, 1866984952934445, -34886452149332864, -1720211491314549375, 26716801597874981064, 1979492625918149729437, -23490293022369696366560, -2777285149336544358953679
Offset: 0
E.g.f.: A(x) = x/1! + 7*x^2/2! + 5*x^3/3! - 146*x^4/4! - 351*x^5/5! + 9936*x^6/6! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..408
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Logarithmic Transform
- Eric Weisstein's World of Mathematics, Cubic Number
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->i^3)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 06 2018
-
nmax = 21; CoefficientList[Series[Log[1 + Exp[x] x (1 + 3 x + x^2)], {x, 0, nmax}], x] Range[0, nmax]!
A308862
Expansion of e.g.f. 1/(1 - x*(1 + 3*x + x^2)*exp(x)).
Original entry on oeis.org
1, 1, 10, 81, 976, 14505, 258456, 5377897, 127852096, 3419620209, 101625743080, 3322169384721, 118475520287136, 4577175039397753, 190436902905933880, 8489222610046324665, 403657900923994965376, 20393319895130130117729, 1090902632352025316904648
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x (1 + 3 x + x^2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + 3*x + x^2)*exp(x)))) \\ Michel Marcus, Mar 10 2022
A281231
Exponential transform of the tetrahedral numbers (A000292).
Original entry on oeis.org
1, 1, 5, 23, 133, 916, 7107, 61286, 580505, 5968400, 66032901, 780962524, 9817927385, 130572957724, 1829676460991, 26919714974436, 414591408939313, 6665930432840304, 111624874150941193, 1942675652654112012, 35071252458352443001, 655641049733709757516
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 23*x^3/3! + 133*x^4/4! + 916*x^5/5! + 7107*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Tetrahedral Number
- Index to sequences related to pyramidal numbers
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*j*(j+1)*(j+2)/6, j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 18 2017
-
Range[0, 21]! CoefficientList[Series[Exp[Exp[x] x (1 + x + x^2/6)], {x, 0, 21}], x]
A336184
a(n) = n^3 + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * (n-k)^3.
Original entry on oeis.org
1, 9, 53, 466, 5569, 82656, 1474045, 30664656, 729036801, 19499288680, 579487528861, 18943592776032, 675568129695601, 26099852672860344, 1085904530481561645, 48407032164910589056, 2301727955153266523521, 116286277045753464506568, 6220517619913795356269725
Offset: 1
-
a[n_] := a[n] = n^3 + (1/n) Sum[Binomial[n, k] k a[k] (n - k)^3, {k, 1, n - 1}]; Table[a[n], {n, 1, 19}]
nmax = 19; CoefficientList[Series[-Log[1 - Exp[x] x (1 + 3 x + x^2)], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A337826
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k^4 * a(n-k).
Original entry on oeis.org
1, 1, 10, 105, 2248, 62445, 2390436, 116650177, 7043659904, 514744959321, 44534754680500, 4493090921151261, 521600149636044480, 68900819660071184149, 10259571068808850618480, 1708054303772376318547125, 315688007001129064574027776, 64370788231256983836207599153
Offset: 0
-
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k^4 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Exp[x (BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])], {x, 0, nmax}], x] Range[0, nmax]!^2
Showing 1-6 of 6 results.