A281454
Exponential transform of the 4-dimensional figurate numbers (A002417).
Original entry on oeis.org
1, 1, 9, 55, 441, 4316, 46867, 566714, 7550601, 109118728, 1696640501, 28209128344, 498557098921, 9320449092072, 183575505529431, 3796015849264216, 82156098504947473, 1856012774517648896, 43663382492497648777, 1067393396478808265656, 27062739020373087036281, 710410408414549934445376, 19277762831507022675509139
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 9*x^2/2! + 55*x^3/3! + 441*x^4/4! + 4316*x^5/5! + 46867*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
-
Range[0, 22]! CoefficientList[Series[Exp[Exp[x] x (6 + 18 x + 9 x^2 + x^3)/6], {x, 0, 22}], x]
A294221
Exponential transform of the square pyramidal numbers (A000330).
Original entry on oeis.org
1, 1, 6, 30, 192, 1471, 12637, 120723, 1267492, 14438913, 176961001, 2318180239, 32275104644, 475285152707, 7373223596299, 120078748361611, 2046720320727328, 36414341169682417, 674650306604656821, 12988470845576660407, 259348785562811740236, 5361803880323803698731, 114593610390850499426211
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 6*x^2/2! + 30*x^3/3! + 192*x^4/4! + 1471*x^5/5! + 12637*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index to sequences related to pyramidal numbers
-
Range[0, 22]! CoefficientList[Series[Exp[Exp[x] x (6 + 9 x + 2 x^2)/6], {x, 0, 22}], x]
a[n_] := a[n] = Sum[a[n - k] Binomial[n - 1, k - 1] k (k + 1) (2 k + 1)/6, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
Showing 1-2 of 2 results.