A308946
Expansion of e.g.f. 1/(1 - x*(1 + x/2)*exp(x)).
Original entry on oeis.org
1, 1, 5, 30, 244, 2485, 30351, 432502, 7043660, 129050649, 2627117875, 58829021416, 1437117395946, 38032508860177, 1083932872119839, 33098858988564090, 1078083456543449416, 37309607437056658129, 1367138649165397662627, 52879280631976735387588
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x (1 + x/2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k + 1, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
A300455
Logarithmic transform of the triangular numbers A000217.
Original entry on oeis.org
0, 1, 2, -1, -11, 19, 201, -764, -7426, 52137, 448435, -5377604, -38712486, 777663613, 4258812299, -149524753650, -505685566184, 36733876797025, 30910872539763, -11174584391207360, 25170998506744790, 4101787001153848461, -24862093152821214653, -1776483826032814964966
Offset: 0
E.g.f.: A(x) = x/1! + 2*x^2/2! - x^3/3! - 11*x^4/4! + 19*x^5/5! + 201*x^6/6! - 764*x^7/7! - 7426*x^8/8! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Logarithmic Transform
- Eric Weisstein's World of Mathematics, Triangular Number
- Index to sequences related to polygonal numbers
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->i*(i+1)/2)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 06 2018
-
nmax = 23; CoefficientList[Series[Log[1 + Exp[x] x (x + 2)/2], {x, 0, nmax}], x] Range[0, nmax]!
A281231
Exponential transform of the tetrahedral numbers (A000292).
Original entry on oeis.org
1, 1, 5, 23, 133, 916, 7107, 61286, 580505, 5968400, 66032901, 780962524, 9817927385, 130572957724, 1829676460991, 26919714974436, 414591408939313, 6665930432840304, 111624874150941193, 1942675652654112012, 35071252458352443001, 655641049733709757516
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 23*x^3/3! + 133*x^4/4! + 916*x^5/5! + 7107*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Tetrahedral Number
- Index to sequences related to pyramidal numbers
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*j*(j+1)*(j+2)/6, j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 18 2017
-
Range[0, 21]! CoefficientList[Series[Exp[Exp[x] x (1 + x + x^2/6)], {x, 0, 21}], x]
A320254
a(n) = n! * [x^n] exp(exp(x)*(x + (n/2 - 1)*x^2)).
Original entry on oeis.org
1, 1, 3, 16, 125, 1291, 16177, 241207, 4153193, 81082225, 1770989921, 42763506919, 1131353484637, 32541516492811, 1011058416700529, 33745374949198231, 1204107124715441873, 45741398365345761073, 1843069565594762478145, 78511973999963036415967, 3525468554804288803649381
Offset: 0
-
Table[n! SeriesCoefficient[Exp[Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]
A336961
Expansion of e.g.f. exp(x * (2 + x) * exp(x)).
Original entry on oeis.org
1, 2, 10, 56, 384, 3022, 26626, 258624, 2734360, 31168682, 380196414, 4932536908, 67717987948, 979613124414, 14877703575130, 236469561581768, 3922587278751504, 67743812585483218, 1215417753459838198, 22609895367286957572, 435341977596130683316
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[x (2 + x) Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] k (k + 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A347665
E.g.f.: exp( exp(x) * (1 + x + x^2 / 2) - 1 ).
Original entry on oeis.org
1, 2, 8, 39, 227, 1518, 11368, 93796, 842416, 8158942, 84581560, 932878169, 10891741957, 134043979644, 1732583270218, 23445954950207, 331260511278659, 4874617929283392, 74548457001207068, 1182551615010825076, 19423368875596930596, 329809489306236629874
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[Exp[x] (1 + x + x^2/2) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (k (k + 1)/2 + 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
A294221
Exponential transform of the square pyramidal numbers (A000330).
Original entry on oeis.org
1, 1, 6, 30, 192, 1471, 12637, 120723, 1267492, 14438913, 176961001, 2318180239, 32275104644, 475285152707, 7373223596299, 120078748361611, 2046720320727328, 36414341169682417, 674650306604656821, 12988470845576660407, 259348785562811740236, 5361803880323803698731, 114593610390850499426211
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 6*x^2/2! + 30*x^3/3! + 192*x^4/4! + 1471*x^5/5! + 12637*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index to sequences related to pyramidal numbers
-
Range[0, 22]! CoefficientList[Series[Exp[Exp[x] x (6 + 9 x + 2 x^2)/6], {x, 0, 22}], x]
a[n_] := a[n] = Sum[a[n - k] Binomial[n - 1, k - 1] k (k + 1) (2 k + 1)/6, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
A352658
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * binomial(k+1,2) * k * a(n-k).
Original entry on oeis.org
1, 1, 5, 39, 508, 9235, 224481, 6959932, 266492388, 12302514945, 671505310855, 42664357009186, 3114726872133570, 258452373177094213, 24149855477595375815, 2520813303733886387220, 291892618561012451083816, 37264133443594227118861233, 5216461719269145457350349359
Offset: 0
-
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[k + 1, 2] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[(x BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])/2], {x, 0, nmax}], x] Range[0, nmax]!^2
A372623
Expansion of e.g.f. exp( exp(x) * (1 + x^2 / 2) - 1 ).
Original entry on oeis.org
1, 1, 3, 11, 48, 247, 1448, 9445, 67651, 526704, 4418875, 39670270, 378931567, 3832882393, 40886570975, 458341921775, 5382862509572, 66050096110691, 844741961321026, 11236481306649167, 155150031880549077, 2219877203279634396, 32860282502526114729
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[Exp[x] (1 + x^2/2) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (k (k - 1)/2 + 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
Showing 1-9 of 9 results.
Comments