A289780
p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0
Example 1: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
-
P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
-
x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
A290890
p-INVERT of the positive integers, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 4, 11, 28, 72, 188, 493, 1292, 3383, 8856, 23184, 60696, 158905, 416020, 1089155, 2851444, 7465176, 19544084, 51167077, 133957148, 350704367, 918155952, 2403763488, 6293134512, 16475640049, 43133785636, 112925716859, 295643364940, 774004377960
Offset: 0
(See the examples at A289780.)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290890 *)
A291000
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *)
A291219
p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^3.
Original entry on oeis.org
1, 1, 3, 5, 11, 21, 42, 83, 163, 323, 635, 1255, 2473, 4880, 9625, 18985, 37451, 73869, 145715, 287421, 566954, 1118331, 2205947, 4351307, 8583091, 16930447, 33395857, 65874464, 129939569, 256310161, 505580371, 997274197, 1967156763, 3880282533, 7653987242
Offset: 0
-
I:=[1,1,3,5,11,21]; [n le 6 select I[n] else Self(n-1)+3*Self(n-2)-Self(n-3)-3*Self(n-4)+Self(n-5)+Self(n-6): n in [1..45]]; // Vincenzo Librandi, Aug 25 2017
-
z = 60; s = x/(1 - x^2); p = 1 - s - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291219 *)
LinearRecurrence[{1, 3, -1, -3, 1, 1}, {1, 1, 3, 5, 11, 21}, 50] (* Vincenzo Librandi, Aug 25 2017 *)
A291382
p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.
Original entry on oeis.org
2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0
-
z = 60; s = x + x^2; p = 1 - 2 s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291382 *)
A291728
p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 2, 4, 9, 17, 35, 70, 142, 285, 576, 1160, 2340, 4716, 9510, 19171, 38653, 77926, 157110, 316747, 638599, 1287479, 2595698, 5233196, 10550681, 21271280, 42885152, 86460984, 174314476, 351436368, 708532813, 1428476905, 2879960190, 5806303628, 11706120825
Offset: 0
-
z = 60; s = x + x^3; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291728 *)
A292480
p-INVERT of the odd positive integers, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560
Offset: 0
s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ...,
p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ...
t(s) = (0,1,2,20,56,...).
-
I:=[0,1,6,20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292480 *)
Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)
A290995
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3432, 6436, 11456, 19584, 32640, 54264, 93024, 170544, 341088, 735472, 1653632, 3749760, 8386560, 18289440, 38724480, 79594560, 159189120, 311058496, 597137408, 1133991936, 2147450880, 4089171840
Offset: 0
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/((1-x)^8 - x^8) )); // G. C. Greubel, Apr 11 2023
-
z = 60; s = x/(1 - x); p = 1 - s^8;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290995 *)
-
concat(vector(7), Vec(x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
def A290995_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^7/((1-x)^8 - x^8) ).list()
A290995_list(60) # G. C. Greubel, Apr 11 2023
A292324
p-INVERT of (1,0,0,1,0,0,0,0,0,...), where p(S) = (1 - S)^2.
Original entry on oeis.org
2, 3, 4, 7, 12, 19, 28, 42, 64, 97, 144, 212, 312, 459, 672, 979, 1422, 2062, 2984, 4308, 6206, 8925, 12816, 18376, 26310, 37620, 53728, 76648, 109230, 155507, 221184, 314325, 446320, 633249, 897804, 1271993, 1800942, 2548242, 3603468, 5092747, 7193604
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 2, -2, 0, 0, -1)
-
z = 60; s = x + x^4; p = (1 - s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292324 *)
A292479
p-INVERT of the positive squares, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 8, 35, 120, 392, 1336, 4725, 16792, 59191, 207536, 727440, 2553264, 8968569, 31502248, 110627195, 388451624, 1364010648, 4789766120, 16819647565, 59063332152, 207403715119, 728306773600, 2557481457440, 8980717116000, 31536219644721, 110740934436168
Offset: 0
s = (1,4,9,16,25,...), S(x) = x + 4 x^2 + 9 x^3 + 16 x^4 + ...,
p(S(x)) = 1 - (x + 4 x^2 + 9 x^3 + 16 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 8*x^3 + 35*x^4 + 120*x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 8 x^2 + 35 x^3 + 120 x^4 + ...
t(s) = (0, 1, 8, 35, 120, ...).
-
I:=[0,1,8,35,120,392]; [n le 6 select I[n] else 6*Self(n-1)-14*Self(n-2)+22*Self(n-3)-14*Self(n-4)+6*Self(n-5)- Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000290 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292479 *)
LinearRecurrence[{6, -14, 22, -14, 6, -1}, {0, 1, 8, 35, 120, 392}, 30] (* Vincenzo Librandi, Oct 03 2017 *)
Showing 1-10 of 271 results.
Comments