A291382
p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.
Original entry on oeis.org
2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0
-
z = 60; s = x + x^2; p = 1 - 2 s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291382 *)
A292480
p-INVERT of the odd positive integers, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560
Offset: 0
s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ...,
p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ...
t(s) = (0,1,2,20,56,...).
-
I:=[0,1,6,20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292480 *)
Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)
A292532
p-INVERT of the squares (A000290), where p(S) = 1 - S^3.
Original entry on oeis.org
0, 0, 1, 12, 75, 329, 1158, 3606, 10971, 35601, 126168, 467541, 1722714, 6173070, 21563906, 74452230, 257613930, 899546303, 3166966692, 11185908147, 39459021883, 138761604786, 486746839758, 1705955898935, 5982257083623, 20999661326520, 73772324787965
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 85, -123, 129, -83, 36, -9, 1)
-
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292532 *)
LinearRecurrence[{9,-36,85,-123,129,-83,36,-9,1},{0,0,1,12,75,329,1158,3606,10971},30] (* Harvey P. Dale, Sep 27 2023 *)
A292533
p-INVERT of the squares (A000290), where p(S) = (1 - S)^2.
Original entry on oeis.org
2, 11, 46, 187, 748, 2948, 11480, 44273, 169374, 643601, 2431526, 9140616, 34212350, 127563959, 474022478, 1756118055, 6488228880, 23912815820, 87935847700, 322713694333, 1182114988606, 4322734288413, 15782353895178, 57537481431056, 209479529802682
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^3; p = (1 - s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292533 *)
A292534
p-INVERT of the squares (A000290), where p(S) = 1 + S - S^2.
Original entry on oeis.org
-1, -2, 4, 21, 30, 11, 80, 622, 2055, 4584, 10711, 34354, 115480, 341213, 934750, 2640483, 7874188, 23564242, 68738591, 198108496, 575654335, 1688669686, 4951141372, 14443935957, 42064267934, 122731975243, 358682023576, 1047906654118, 3058580566407
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 + s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292534 *)
A292535
p-INVERT of the squares (A000290), where p(S) = 1 + S - 2 S^2.
Original entry on oeis.org
1, 7, 38, 189, 909, 4368, 21093, 102051, 493702, 2387689, 11546425, 55837024, 270025769, 1305841103, 6315023830, 30539305893, 147687325509, 714212301776, 3453913488845, 16703042620715, 80775512179990, 390628431683601, 1889069687788593, 9135495517900480
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 + s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292535 *)
A292536
p-INVERT of the squares (A000290), where p(S) = 1 + S - 3 S^2.
Original entry on oeis.org
1, 8, 48, 255, 1310, 6773, 35260, 183740, 956765, 4980320, 25924725, 134956612, 702554244, 3657326875, 19039098206, 99112598721, 515954630808, 2685927132776, 13982245762937, 72787973059648, 378915453775913, 1972536332660240, 10268516498713448
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 + s - 3 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292536 *)
Showing 1-7 of 7 results.
Comments