A291382
p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.
Original entry on oeis.org
2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0
-
z = 60; s = x + x^2; p = 1 - 2 s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291382 *)
A292479
p-INVERT of the positive squares, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 8, 35, 120, 392, 1336, 4725, 16792, 59191, 207536, 727440, 2553264, 8968569, 31502248, 110627195, 388451624, 1364010648, 4789766120, 16819647565, 59063332152, 207403715119, 728306773600, 2557481457440, 8980717116000, 31536219644721, 110740934436168
Offset: 0
s = (1,4,9,16,25,...), S(x) = x + 4 x^2 + 9 x^3 + 16 x^4 + ...,
p(S(x)) = 1 - (x + 4 x^2 + 9 x^3 + 16 x^4 + ...)^2,
1/p(S(x)) = 1 + x^2 + 8*x^3 + 35*x^4 + 120*x^5 + ...
T(x) = (-1 + 1/p(S(x)))/x = x + 8 x^2 + 35 x^3 + 120 x^4 + ...
t(s) = (0, 1, 8, 35, 120, ...).
-
I:=[0,1,8,35,120,392]; [n le 6 select I[n] else 6*Self(n-1)-14*Self(n-2)+22*Self(n-3)-14*Self(n-4)+6*Self(n-5)- Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017
-
z = 60; s = x (x + 1)/(1 - x)^3; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000290 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292479 *)
LinearRecurrence[{6, -14, 22, -14, 6, -1}, {0, 1, 8, 35, 120, 392}, 30] (* Vincenzo Librandi, Oct 03 2017 *)
A292481
p-INVERT of the odd positive integers, where p(S) = 1 - S^3.
Original entry on oeis.org
0, 0, 1, 9, 42, 139, 381, 984, 2685, 8061, 25434, 79695, 242577, 721584, 2131785, 6333633, 18984618, 57194883, 172319157, 517851144, 1552599333, 4651054101, 13939132698, 41810229351, 125475990057, 376585031520, 1129975049169, 3389800055481, 10168040440746
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292481 *)
LinearRecurrence[{6,-15,21,-12,9},{0,0,1,9,42,139},30] (* Harvey P. Dale, Jun 06 2024 *)
A292482
p-INVERT of the odd positive integers, where p(S) = (1 - S)^2.
Original entry on oeis.org
2, 9, 32, 112, 384, 1296, 4320, 14256, 46656, 151632, 489888, 1574640, 5038848, 16061328, 51018336, 161558064, 510183360, 1607077584, 5050815264, 15841193328, 49589822592, 154968195600, 483500770272, 1506290861232, 4686238234944, 14560811658576
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292482 *)
A292483
p-INVERT of the odd positive integers, where p(S) = (1 - S)^3.
Original entry on oeis.org
3, 15, 61, 240, 912, 3376, 12240, 43632, 153360, 532656, 1831248, 6240240, 21100176, 70858800, 236510928, 785115504, 2593432080, 8528565168, 27932538960, 91144257264, 296391022992, 960802812720, 3105562639824, 10010945435760, 32189993590032, 103264606820016
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = (1 - s)^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292483 *)
A292484
p-INVERT of the odd positive integers, where p(S) = 1 + S - S^2.
Original entry on oeis.org
-1, -1, 4, 9, 5, 8, 63, 183, 348, 745, 2061, 5456, 12991, 30831, 76660, 192137, 472597, 1155032, 2843007, 7024935, 17315404, 42592489, 104847389, 258355104, 636507775, 1567442143, 3859933668, 9507231753, 23417547813, 57675809960, 142047927231, 349856144791
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292484 *)
LinearRecurrence[{3,-4,7,-1},{-1,-1,4,9},40] (* Harvey P. Dale, Sep 22 2024 *)
A292485
p-INVERT of the odd positive integers, where p(S) = 1 - S - 2 S^2.
Original entry on oeis.org
1, 6, 28, 120, 504, 2128, 9016, 38208, 161864, 685648, 2904408, 12303264, 52117544, 220773552, 935211704, 3961620096, 16781691912, 71088388112, 301135245080, 1275629368416, 5403652717288, 22890240236144, 96964613663352, 410748694893888, 1739959393240264
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292485 *)
LinearRecurrence[{5,-5,7,2},{1,6,28,120},30] (* Harvey P. Dale, Oct 14 2023 *)
A292486
p-INVERT of the odd positive integers, where p(S) = 1 - S - 3 S^2.
Original entry on oeis.org
1, 7, 36, 165, 747, 3420, 15705, 72063, 330516, 1515933, 6953283, 31893516, 146289393, 671000247, 3077745156, 14117009877, 64751939163, 297004363452, 1362300384969, 6248602953135, 28661108314356, 131462846314317, 602994126047283, 2765815028667756
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 3 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292486 *)
LinearRecurrence[{5,-4,9,3},{1,7,36,165},30] (* Harvey P. Dale, Sep 29 2024 *)
-
x='x+O('x^99); Vec(((1+x)*(1+x+4*x^2))/(1-5*x+4*x^2-9*x^3-3*x^4)) \\ Altug Alkan, Oct 03 2017
A292487
p-INVERT of the odd positive integers, where p(S) = 1 - S - 4 S^2.
Original entry on oeis.org
1, 8, 44, 212, 1020, 4980, 24348, 118868, 580156, 2831924, 13824092, 67481876, 329408892, 1607991540, 7849328028, 38316090836, 187038012604, 913016364980, 4456842098396, 21755843899028, 106200025265148, 518409923170932, 2530591191342108, 12352949840710484
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 4 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292487 *)
-
x='x+O('x^99); Vec(((1+x)*(1+2*x+5*x^2))/(1-5*x+3*x^2-11*x^3-4*x^4)) \\ Altug Alkan, Oct 03 2017
A292488
p-INVERT of the odd positive integers, where p(S) = 1 - S - 5 S^2.
Original entry on oeis.org
1, 9, 52, 261, 1323, 6814, 35077, 180261, 926348, 4761289, 24472527, 125783886, 646502873, 3322895889, 17079026852, 87782799261, 451186103523, 2319006747614, 11919233055677, 61262485125261, 314876977751548, 1618404981969089, 8318279426249127
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 5 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292488 *)
LinearRecurrence[{5,-2,13,5},{1,9,52,261},30] (* Harvey P. Dale, Jul 31 2025 *)
-
x='x+O('x^99); Vec(((1+x)*(1+3*x+6*x^2))/(1-5*x+2*x^2-13*x^3-5*x^4)) \\ Altug Alkan, Oct 03 2017
Showing 1-10 of 16 results.
Comments