cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A291382 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.

Original entry on oeis.org

2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,0,0,0,...) = A019590, in some cases t(1,1,0,0,0,...) is a shifted version of the cited sequence:
p(S) t(1,1,0,0,0,...)
1 - S A000045 (Fibonacci numbers)
1 - S^2 A094686
1 - S^3 A115055
1 - S^4 A291379
1 - S^5 A281380
1 - S^6 A281381
1 - 2 S A002605
1 - 3 S A125145
(1 - S)^2 A001629
(1 - S)^3 A001628
(1 - S)^4 A001629
(1 - S)^5 A001873
(1 - S)^6 A001874
1 - S - S^2 A123392
1 - 2 S - S^2 A291382
1 - S - 2 S^2 A124861
1 - 2 S - S^2 A291383
(1 - 2 S)^2 A073388
(1 - 3 S)^2 A291387
(1 - 5 S)^2 A291389
(1 - 6 S)^2 A291391
(1 - S)(1 - 2 S) A291393
(1 - S)(1 - 3 S) A291394
(1 - 2 S)(1 - 3 S) A291395
(1 - S)(1 - 2 S) A291393
(1 - S)(1 - 2 S)(1 - 3 S) A291396
1 - S - S^3 A291397
1 - S^2 - S^3 A291398
1 - S - S^2 - S^3 A186812
1 - S - S^2 - S^3 - S^4 A291399
1 - S^2 - S^4 A291400
1 - S - S^4 A291401
1 - S^3 - S^4 A291402
1 - 2 S^2 - S^4 A291403
1 - S^2 - 2 S^4 A291404
1 - 2 S^2 - 2 S^4 A291405
1 - S^3 - S^6 A291407
(1 - S)(1 - S^2) A291408
(1 - S^2)(1 - S)^2 A291409
1 - S - S^2 - 2 S^3 A291410
1 - 2 S - S^2 + S^3 A291411
1 - S - 2 S^2 + S^3 A291412
1 - 3 S + S^2 + S^3 A291413
1 - 2 S + S^3 A291414
1 - 3 S + S^2 A291415
1 - 4 S + S^2 A291416
1 - 4 S + 2 S^2 A291417

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^2; p = 1 - 2 s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A019590 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291382 *)

Formula

G.f.: (-2 - 3 x - 2 x^2 - x^3)/(-1 + 2 x + 3 x^2 + 2 x^3 + x^4).
a(n) = 2*a(n-1) + 3*a(n-2) + 2*a(n-3) + a(n-4) for n >= 5.

A290616 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - 2 S - S^2.

Original entry on oeis.org

2, 5, 12, 31, 80, 205, 526, 1350, 3464, 8889, 22810, 58532, 150198, 385420, 989018, 2537899, 6512450, 16711463, 42882940, 110041025, 282373998, 724594076, 1859365870, 4771280299, 12243483684, 31417750230, 80620439004, 206878440932, 530866488090
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - 2 s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290616 *)

Formula

G.f.: -((-2 - x + 2 x^3)/(1 - 2 x - x^2 - 2 x^3 + 2 x^4 + x^6)).
a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - 2*a(n-4) - a(n-6) for n >= 7.

A289918 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = (1 - S^2).

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 4, 4, 6, 11, 12, 22, 30, 42, 68, 91, 140, 205, 292, 443, 634, 936, 1380, 1999, 2960, 4316, 6324, 9300, 13576, 19949, 29216, 42785, 62790, 91917, 134784, 197548, 289402, 424331, 621708, 911218, 1335586, 1957086, 2868620, 4203927, 6161084
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = (1 - s^2);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A289918 *)

Formula

G.f.: x/((-1 - x + x^3) (-1 + x + x^3)).
a(n) = a(n-2) + 2*a(n-3) - a(n-6) for n >= 6.

Extensions

Recurrence corrected by Colin Barker, Sep 14 2017

A292322 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 73, 152, 317, 653, 1355, 2812, 5818, 12061, 25001, 51786, 107323, 222409, 460824, 954942, 1978840, 4100398, 8496827, 17606974, 36484494, 75602461, 156661630, 324629762, 672690133, 1393931744, 2888469094, 5985414154, 12402824741
Offset: 0

Views

Author

Clark Kimberling, Sep 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292322 *)

Formula

G.f.: -((1 + x + x^2 - 2 x^3 - x^4 + x^6)/(-1 + x + x^2 + 4 x^3 - 2 x^4 - x^5 - 3 x^6 + x^7 + x^9)).
a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - a(n-5) - 3*a(n-6) + a(n-7) + a(n-9) for n >= 10.

A291730 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - 2 S - 2 S^2.

Original entry on oeis.org

2, 6, 18, 56, 168, 510, 1544, 4680, 14176, 42952, 130128, 394252, 1194456, 3618840, 10963960, 33217424, 100638528, 304903688, 923764032, 2798719872, 8479257216, 25689531840, 77831351040, 235804967056, 714416256800, 2164460716896, 6557647800096
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - 2 s - 2 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291730 *)
    u / 2  (* A291731 *)

Formula

G.f.: -((2 (1 + x^2) (1 + x + x^3))/(-1 + 2 x + 2 x^2 + 2 x^3 + 4 x^4 + 2 x^6)).
a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) + 4*a(n-4) + 2*a(n-6) for n >= 7.

A291732 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - 2 S)^2.

Original entry on oeis.org

4, 12, 36, 104, 288, 780, 2080, 5472, 14240, 36736, 94080, 239440, 606144, 1527360, 3833024, 9584768, 23890944, 59380160, 147207168, 364084224, 898569216, 2213388288, 5442392064, 13360097536, 32746992640, 80153705472, 195933828096, 478374127616
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = (1 - 2 s)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291732 *)
    u / 4  (*A291733)

Formula

G.f.: -((4 (1 + x^2) (-1 + x + x^3))/(-1 + 2 x + 2 x^3)^2).
a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) - 8*a(n-4) - 4*a(n-6) for n >= 7.

A292320 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S - S^3.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 36, 67, 122, 209, 377, 681, 1193, 2130, 3823, 6764, 12043, 21531, 38252, 68076, 121456, 216126, 384691, 685636, 1220767, 2173346, 3871747, 6894873, 12276852, 21866387, 38941846, 69344928, 123500513, 219943018, 391676701, 697538335
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - s - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292320 *)

Formula

G.f.: -((1 + x^2 - 2 x^3 + x^6)/(-1 + x + 4 x^3 - 2 x^4 - 3 x^6 + x^7 + x^9)).
a(n) = a(n-1) + 4*a(n-3) - 2*a(n-4) - 3*a(n-6) + a(n-7) + a(n-9) for n >= 10.

A289919 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = (1 - S)^2.

Original entry on oeis.org

2, 3, 4, 7, 12, 19, 30, 48, 76, 119, 186, 290, 450, 696, 1074, 1653, 2538, 3889, 5948, 9081, 13842, 21068, 32022, 48609, 73700, 111618, 168868, 255232, 385410, 581479, 876576, 1320411, 1987516, 2989583, 4493910, 6750968, 10135584, 15208443, 22807902
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = (1 - s)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A289919 *)

Formula

G.f.: -((-2 + x + 2 x^3)/(-1 + x + x^3)^2).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) - a(n-6) for n >= 7.

A291035 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S - 2 S^2.

Original entry on oeis.org

1, 3, 5, 12, 27, 58, 130, 285, 629, 1389, 3060, 6753, 14892, 32844, 72445, 159775, 352401, 777244, 1714259, 3780930, 8339090, 18392449, 40565829, 89470733, 197333940, 435233685, 959938112, 2117210180, 4669654005, 10299246171, 22715702489, 50101058976
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - s - 2 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291035 *)

Formula

G.f.: -(1 + x)*(-1 - x + x^2)/((-1 - x + x^3)*(-1 + 2*x + x^3)).
a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) - a(n-6) for n >= 7.

A291036 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - 2 S - 2 S^2.

Original entry on oeis.org

2, 6, 16, 46, 132, 376, 1074, 3066, 8752, 24986, 71328, 203624, 581298, 1659462, 4737360, 13524006, 38607732, 110215648, 314638754, 898216794, 2564189568, 7320134930, 20897197344, 59656394448, 170304435554, 486177568038, 1387918211824, 3962167507006
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - 2 s - 2 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291036 *)
    u/2 (* A291037 *)

Formula

G.f.: -((2 (-1 - x + x^3))/(1 - 2 x - 2 x^2 - 2 x^3 + 2 x^4 + x^6)).
a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - 2*a(n-4) - a(n-6) for n >= 7.
Showing 1-10 of 30 results. Next