cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A077428 Minimal (positive) solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 with D(n)= A077425(n). The companion sequence is b(n)=A078355(n).

Original entry on oeis.org

3, 11, 66, 5, 27, 46, 146, 4098, 7, 51, 302, 1523, 258, 25, 4562498, 9, 83, 1000002, 29, 125619266, 402, 82, 68123, 2408706, 11, 123, 33710, 173, 12166146, 190, 578, 3723, 4354, 45371, 23550, 13, 171, 124846, 1703027, 18498, 110, 12448646853698, 786
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426.
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions of a^2 - D(n)*b^2 =+4 is as follows. If D(n)=A077425(n) but not from A077426 (period length of continued fraction of (sqrt(D(n))+1)/2 is even) then a(n)=2*x(n)-y(n) and b(n)=y(n). E.g. D(4)=21 with Perron's (x,y)=(3,1) and (a,b)=(5,1). 1=b(4)=A078355(4). If D(n)=A077425(n) appears also in A077426 (odd period length of continued fraction of (sqrt(D(n))+1)/2) then a(n)=(2*x-y)^2+2 and b(n)=(2*x-y)*y. E.g. D(7)=37 with Perron's (x,y)=(7,2) leading to (a,b)=(146,24) with 24=b(7)=A078355(7).
The generic D(n) values are those from A078371(k-1) := (2*k+3)*(2*k-1), for k>=1, which are 5 (mod 8). For such D values the minimal solution is (a(n),b(n))=(2*k+1,1) (e.g. D(16)=77= A078371(3) with a(16)=2*4+1=9 and b(16)=A078355(16)=1).
The general solution of Pell a^2-D(n)*b^2 = +4 with generic D(n)=A077425(n)=A078371(k-1), k>=1, is a(n,m)= 2*T(m+1,(2*k+1)/2) and b(n,m)= S(m,2*k+1), m>=0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 resp. A049310.
For non-generic D(n) (not from A078371) the general solution of a^2-D(n)*b^2 = +4 is a(n,m)= 2*T(m+1,a(n)/2) and b(n,m)= b(n)*S(m,a(n)), m>=0, with Chebyshev's polynomials and in this case b(n)>1.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Programs

  • Mathematica
    d = Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&]; a[n_] := Module[{a, b, r}, a /. {r = Reduce[a > 0 && b > 0 && a^2 - d[[n]]*b^2 == 4, {a, b}, Integers]; (r /. C[1] -> 0) || (r /. C[1] -> 1) // ToRules} // Select[#, IntegerQ, 1] &] // First; Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Jul 30 2013 *)

Extensions

More terms from Max Alekseyev, Mar 03 2010

A078355 Minimal (positive) solution a(n) of Pell equation b(n)^2 - D(n)*a(n)^2 = +4 with D(n)= A077425(n). The companion sequence is a(n)=A077428(n).

Original entry on oeis.org

1, 3, 16, 1, 5, 8, 24, 640, 1, 7, 40, 195, 32, 3, 534000, 1, 9, 106000, 3, 12754704, 40, 8, 6525, 226592, 1, 11, 2968, 15, 1039424, 16, 48, 305, 352, 3621, 1856, 1, 13, 9384, 126585, 1360, 8, 896073208080, 56, 72664, 3, 6440, 5, 521904, 1, 15, 140510608, 5
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

For the conversion of the (x,y) values of Perron's table to the (b(n),a(n)) values see a A077428 comment.
For the general solution of Pell b^2 - D(n)*a^2 = +4 see a comment in A077428 (with a and b interchanged).

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Programs

  • Mathematica
    d = Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&]; a[n_] := Module[{a, b, r}, b /. {r = Reduce[a > 0 && b > 0 && a^2 - d[[n]]*b^2 == 4, {a, b}, Integers]; (r /. C[1] -> 0) || (r /. C[1] -> 1) // ToRules} // Select[#, IntegerQ, 1] &] // First; Table[a[n], {n, 1, 52}] (* Jean-François Alcover, Jul 30 2013 *)

Extensions

More terms from Max Alekseyev, Mar 03 2010

A077427 Primitive period length of (regular) continued fraction of (sqrt(D(n))+1)/2 for D(n)=A077425(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 4, 3, 5, 2, 1, 6, 3, 3, 4, 9, 2, 1, 7, 2, 9, 3, 6, 7, 7, 2, 1, 10, 4, 7, 4, 3, 5, 8, 5, 10, 2, 1, 12, 5, 3, 4, 15, 3, 14, 4, 12, 4, 16, 2, 1, 9, 2, 19, 2, 16, 6, 3, 8, 11, 5, 6, 9, 15, 2, 1, 10, 10, 4, 6, 19, 3, 4, 3, 16
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

The Pell equation x^2 - D(n)*y^2 = -4 has (infinitely many integer) solutions if and only if a(n) is odd.

Examples

			a(6)=4 because the (periodic) continued fraction for (sqrt(D(6))+1)/2 = (sqrt(33)+1)/2 = 3.372281324... is [3, periodic(2, 1, 2, 5,)] with period length 4. Because these continued fractions are always of the form [b(0),periodic(b(1),b(2),...,b(2),b(1),2*b(0)-1,)] with the symmetric piece b(1),b(2),..., b(2),b(1), Perron op. cit. writes for this b(0),b(1),b(2),...,(b(k/2)) if the period length k is even and b(0),b(1),b(2),...,b((k-1)/2) if the period length is odd. In this example: k=4 and Perron writes 3,2,(1). Another example: D(8)= A077425(8)=41 leads to Perron's 3,1,2 standing for [3,periodic(1,2,2,1,5,)], the continued fraction for (sqrt(41)+1)/2 which has odd period length a(8)=5.
a(4)=2 is even and D(4)=A077425(4)=21, hence x^2 - 21*y^2 = -4 has no nontrivial integer solution.
a(8)=5 is odd and D(8)=A077425(8)=41, hence x^2 - 41*y^2 = -4 is solvable (with nontrivial integers) as well as x^2 - 41*y^2 = +4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109).

Crossrefs

Cf. A077426.

A226165 Squarefree part of A077425(n) (numbers 4*k+1, k>=0, not a square).

Original entry on oeis.org

5, 13, 17, 21, 29, 33, 37, 41, 5, 53, 57, 61, 65, 69, 73, 77, 85, 89, 93, 97, 101, 105, 109, 113, 13, 5, 129, 133, 137, 141, 145, 149, 17, 157, 161, 165, 173, 177, 181, 185, 21, 193, 197, 201, 205, 209, 213, 217, 221, 229, 233, 237, 241, 5, 249, 253, 257, 29
Offset: 1

Views

Author

Wolfdieter Lang, Jun 14 2013

Keywords

Comments

a(n) == 1 (mod 4), n >= 1. This is because 4*k+1, k>=0, not a square, can only have an even number of odd primes of the type 3 (mod 4) with odd exponents in the prime number factorization. The squarefree part of 4*k+1 has then an even number (maybe 0) of primes of the type 3 (mod 4). Examples:
a(4) = 21 = 3*7, a(6) = 33 = 3*11.
D(n) = A077425(n) are the 1 (mod 4) discriminants of indefinite binary quadratic forms (they are the odd numbers from A079896). sqrt(D(n)) becomes then, up to an integer factor, sqrt(a(n)), which defines a real quadratic number field Q(sqrt(a(n))) with a basis <1, omega(a(n))> for the ring of integers in this field, where omega(a(n)) = (1 + sqrt(a(n)))/2. Example: sqrt(D(9)) = sqrt(45) = 3*sqrt(a(9)) = 3*sqrt(5), with omega(5) = (1 + sqrt(5))/2 (the golden section) for Q(sqrt(5)) = Q(omega(5)).

Crossrefs

Programs

  • Mathematica
    SquareFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n]); SquareFreePart /@ (4*Range[65] + 1) // DeleteCases[#, 1] & (* Jean-François Alcover, Jun 14 2013 *)
  • PARI
    [core(n) | n <- vector(100,n,4*n+1), !issquare(n)] \\ Charles R Greathouse IV, Mar 11 2014

Formula

a(n) = A007913(A077425(n)).

A078361 Minimal positive solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 or -4 with D(n)=A077425(n). The companion sequence is b(n)=A077058(n).

Original entry on oeis.org

1, 3, 8, 5, 5, 46, 12, 64, 7, 7, 302, 39, 16, 25, 2136, 9, 9, 1000, 29, 11208, 20, 82, 261, 1552, 11, 11, 33710, 173, 3488, 190, 24, 61, 4354, 213, 23550, 13, 13, 124846, 1305, 136, 110, 3528264, 28, 1030190, 43, 93102, 73, 7688126, 15, 15, 46312, 77
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426 (this second case excludes in Perron's table the D values with a 'Teilnenner' in brackets).
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions is a(n)=2*x(n)-y(n) and b(n)=y(n). If D(n)=A077425(n) is not in A077426 then the equation with -4 has no solution and a(n) and b(n) are the minimal solutions of the a(n)^2 - D(n)*b(n)^2 = +4 equation. If D(n)=A077425(n) is in A077426 then the a(n) and b(n) values are the minimal solution of the a(n)^2 - D(n)*b(n)^2 = -4 equation. In this case a(+,n)= a(n)^2+2 and b(+,n)=a(n)*b(n) are the minimal solution of a^2 - D(n)*b^2 = +4.
For Pell equation a^2 - D*b^2 = +4, see A077428 and A078355. For Pell equation a^2 - D*b^2 = -4, see A078356 and A078357.

Examples

			29=D(5)=A077425(5) is A077426(4), hence a(5)=5 and b(5)=A077058(5)=1 solve a^2 - 29*b^2=-4 minimally and a(+,5)=a(5)^2+2=27 with b(+,5)=a(5)*b(5)=5*1=5 solve a^2 - 29*b^2=+4 minimally. See also A077428 with companion A078355.
21=D(4)=A077425(4) is not in A077426, hence a(4)=5 and b(4)=A077058(4)=1 give the solution with minimal positive b of a^2 - 21*b^2=+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Extensions

More terms from Matthew Conroy, Apr 20 2003

A078371 a(n) = (2*n+5)*(2*n+1).

Original entry on oeis.org

5, 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, 725, 837, 957, 1085, 1221, 1365, 1517, 1677, 1845, 2021, 2205, 2397, 2597, 2805, 3021, 3245, 3477, 3717, 3965, 4221, 4485, 4757, 5037, 5325, 5621, 5925, 6237, 6557, 6885, 7221, 7565, 7917, 8277, 8645
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

This is the generic form of D in the (nontrivially) solvable Pell equation x^2 - D*y^2 = +4. See A077428 and A078355.
Consider all primitive Pythagorean triples (a,b,c) with c-a=8, sequence gives values of a. (Corresponding values for b are A017113(n), while c follows A078370(n).) - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004
From Vincenzo Librandi, Aug 08 2010: (Start)
The identity (4*n^3 + 18*n^2 + 24*n + 9)^2 - (4*n^2 + 12*n + 5)*(2*n^2 + 6*n + 4)^2 = 1 (see Ramasamy's paper in link) can be written as A141530(n+2)^2 - a(n)*A046092(n+1)^2 = 1.
a(n)^3 + 6*a(n)^2 + 9*a(n) + 4 is a square: in fact, a(n)^3 + 6*a(n)^2 + 9*a(n) + 4 = (a(n) + 1)^2*(a(n) + 4), where a(n) + 4 = (2*n+3)^2. (End)
Products of two positive odd integers with difference 4 (i.e., 1*5, 3*7, 5*9, 7*11, 9*13, ...). - Wesley Ivan Hurt, Nov 19 2013
Starting with stage 1, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 675", based on the 5-celled von Neumann neighborhood. - Robert Price, May 21 2016
The continued fraction expansion of (sqrt(a(n))-1)/2 is [n; {1,2*n+1}] with periodic part of length 2: repeat {1,2*n+1}. - Ron Knott, May 11 2017
a(n) is the sum of 2*n+5 consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
The continued fraction expansion of sqrt(a(n)) is [2n+2; {1, n, 2, n, 1, 4n+4}]. For n=0, this collapses to [2; {4}]. - Magus K. Chu, Aug 26 2022

Crossrefs

Subsequence of A077425 (D values (not a square) for which Pell x^2 - D*y^2 = +4 is solvable in positive integers).
Supersequence of A143206.

Programs

  • Magma
    [(2*n+5)*(2*n+1): n in [0..100]]; // G. C. Greubel, Sep 19 2018
  • Maple
    seq((2*n+5)*(2*n+1), n=0..48); # Emeric Deutsch, Feb 24 2005
  • Mathematica
    Table[(2 n + 5) (2 n + 1), {n, 0, 100}] (* Wesley Ivan Hurt, Nov 19 2013 *)
    LinearRecurrence[{3,-3,1},{5,21,45},50] (* Harvey P. Dale, Oct 18 2020 *)
  • PARI
    lista(nn) = {for (n=0, nn, print1((2*n+1)*(2*n+5), ", "));} \\ Michel Marcus, Nov 21 2013
    

Formula

a(n) = 8*(binomial(n+2, 2)-1)+5, hence subsequence of A004770 (5 (mod 8) numbers).
G.f.: (5 + 6*x - 3*x^2)/(1-x)^3.
a(n) = A061037(2*n+1) = (2*n+3)^2 - 4. For A061037: a(2*n+1) = (2*n+1)*(2*n+5) = (2*n+3)^2-4. - Paul Curtz, Sep 24 2008
a(n) = 8*(n+1) + a(n-1) for n > 0, a(0)=5. - Vincenzo Librandi, Aug 08 2010
From Ilya Gutkovskiy, May 22 2016: (Start)
E.g.f.: (5 + 4*x*(4 + x))*exp(x).
Sum_{n>=0} 1/a(n) = 1/3. (End)
Sum_{n>=0} (-1)^n/a(n) = 1/6. - Amiram Eldar, Oct 08 2023

Extensions

More terms from Emeric Deutsch, Feb 24 2005

A078358 Non-oblong numbers: Complement of A002378.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

The (primitive) period length k(n)=A077427(n) of the (regular) continued fraction of (sqrt(4*a(n)+1)+1)/2 determines whether or not the Diophantine equation (2*x-y)^2 - (1+4*a(n))*y^2 = +4 or -4 is solvable and the approximants of this continued fraction give all solutions. See A077057.
The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003
Infinite series 1/A078358(n) is divergent. Proof: Harmonic series 1/A000027(n) is divergent and can be distributed on two subseries 1/A002378(k+1) and 1/A078358(m). The infinite subseries 1/A002378(k+1) is convergent to 1, so Sum_{n>=1} 1/A078358(n) is divergent. - Artur Jasinski, Sep 28 2008

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=(A077425(n)-1)/4.
Cf. A049068 (subsequence), A144786.

Programs

  • Haskell
    a078358 n = a078358_list !! (n-1)
    a078358_list = filter ((== 0) . a005369) [0..]
    -- Reinhard Zumkeller, Jul 04 2014, May 08 2012
    
  • Mathematica
    Complement[Range[930], Table[n (n + 1), {n, 0, 30}]] (* and *) Table[Ceiling[Sqrt[n]] + n - 1, {n, 900}] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2011 *)
  • PARI
    a(n)=sqrtint(n-1)+n \\ Charles R Greathouse IV, Jan 17 2013
    
  • Python
    from operator import sub
    from sympy import integer_nthroot
    def A078358(n): return n+sub(*integer_nthroot(n,2)) # Chai Wah Wu, Oct 01 2024

Formula

4*a(n)+1 is not a square number.
a(n) = ceiling(sqrt(n)) + n -1. - Leroy Quet, Jul 06 2007
A005369(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2014

A077426 Nonsquare integers n such that the continued fraction (sqrt(n)+1)/2 has odd period length.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 173, 181, 185, 193, 197, 229, 233, 241, 257, 265, 269, 277, 281, 293, 313, 317, 325, 337, 349, 353, 365, 373, 389, 397, 401, 409, 421, 425, 433, 445, 449, 457, 461, 481, 485
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Nonsquare integers n for which Pell equation x^2 - n*y^2 = -4 has infinitely many integer solutions. The smallest solutions are given in A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, table p. 108).

Crossrefs

A subsequence of A077425.
Odd elements of A003814.

Programs

  • Maple
    isOddPrim := proc(n::integer)
        local cf;
        cf := numtheory[cfrac]((sqrt(n)+1)/2,'periodic','quotients') ;
        if nops(op(2,cf)) mod 2 =1 then
            RETURN(true) ;
        else
            RETURN(false) ;
        fi ;
    end:
    notA077426 := proc(n::integer)
        if issqr(n) then
            RETURN(true) ;
        elif not isOddPrim(n) then
            RETURN(true) ;
        else
            RETURN(false) ;
        fi ;
    end:
    A077426 := proc(n::integer)
        local resul,i ;
        resul := 5 ;
        i := 1 ;
        while i < n do
            resul := resul+4 ;
            while notA077426(resul) do
                resul := resul+4 ;
            od ;
            i:= i+1 ;
        od ;
        RETURN(resul) ;
    end:
    for n from 1 to 61 do print(A077426(n)) ; od : # R. J. Mathar, Apr 25 2006
  • Mathematica
    fQ[n_] := !IntegerQ@ Sqrt@ n && OddQ@ Length@ ContinuedFraction[(Sqrt@ n + 1)/2][[2]]; Select[Range@ 500, fQ] (* Robert G. Wilson v, Nov 17 2012 *)

Extensions

Edited and extended by Max Alekseyev, Mar 03 2010
Edited by Max Alekseyev, Mar 05 2010

A078356 Minimal positive solution z of Pell equation z^2 - A077426(n)*t^2 = -4.

Original entry on oeis.org

1, 3, 8, 5, 12, 64, 7, 39, 16, 2136, 9, 1000, 11208, 20, 261, 1552, 11, 3488, 24, 61, 213, 13, 1305, 136, 3528264, 28, 15, 46312, 142022136, 32, 12144, 164, 2613, 2127064, 17, 253724736, 89, 36, 2031654672, 18420, 142528, 19, 10236, 2564, 3447, 40, 223843593936
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

The corresponding values of t are given in A078357.
Computed from Perron's table (see reference p. 108) which gives the minimal x,y values for the Diophantine equation x^2 - x*y - ((D(m)-1)/4)*y^2 = +1 and -1 for respectively D(m)=A077425(m) and D(m)=A077426(m) (this second case excludes in Perron's table the D values with a 'Teilnenner' in brackets).
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions of a^2 - D(n)*b^2 =-4 see a comment in A077428. Here only D values with no 'Teilnenner' in brackets are of interest and a(n)=2*x(n)-y(n) and b(n)=y(n). E.g. D=41, with 'Teilnenner von (sqrt(D)+1)/2' in the notation, explained in an example of A077427, 3,1,2 (period length k=5) and (x,y)=(37,10) which translates to the minimal solution (a,b)=(64,10).
Generic D(n) values are those from A078370(k)=(4*k(k+1)+5), k>=0, which are 5 (mod 8). For such D values the minimal solution is (a,b)=(2*k+1,1) (e.g. D(7)= A077426(7) = 53 = A078370(3) with a(7)= 2*3+1=7 and b(7)=A078357(7)=1).
The general solution of Pell a^2-D(n)*b^2 = -4 with generic D(n)=A078370(k), k>=0, is a(n,m)= (2*k+1)*S(2*m,sqrt(D(n))) and b(n,m)= T(2*m+1,sqrt(D(n))/2)/(sqrt(D(n))/2), m>=0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 resp. A049310.
For non-generic D(n) (not from A078370) the general solution of a^2-D(n)*b^2 = -4 is a(n,m)=a(n)*S(2*m,sqrt(a(n)^2+4)) and b(n,m)= b(n)*T(2*m+1,sqrt(a(n)^2+4)/2)/(sqrt(a(n)^2+4)/2), m>=0, with Chebyshev's polynomials and in this case b(n)>1.

Examples

			41=D(6)=A077426(6) (also A077425(8)), hence a(6)=64 and b(6)=A078357(6)=10 satisfies 64^2 - 41*10^2 = -4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Programs

  • Mathematica
    $MaxExtraPrecision = 100; A077426 = Select[Range[ 500], ! IntegerQ[Sqrt[#]] && OddQ[ Length[ ContinuedFraction[(Sqrt[#] + 1)/2] // Last]] &]; a[n_] := {z, t} /. {ToRules[ Reduce[z > 0 && t > 0 && z^2 - A077426[[n]]*t^2 == -4, {z, t}, Integers] /. C[1] -> 0]} // Sort // First // First; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jun 21 2013 *)

Extensions

More terms from R. J. Mathar, Sep 24 2009
Edited by Max Alekseyev, Mar 03 2010

A077057 Minimal positive solution a(n) of Diophantine equation a(n)^2 - a(n)*b(n) - G(n)*b(n)^2 = +1 or -1 with G(n) := A078358(n). The companion sequence is b(n)=A077058(n).

Original entry on oeis.org

1, 2, 5, 3, 3, 27, 7, 37, 4, 4, 171, 22, 9, 14, 1193, 5, 5, 553, 16, 6173, 11, 45, 143, 849, 6, 6, 18339, 94, 1893, 103, 13, 33, 2353, 115, 12703, 7, 7, 67115, 701, 73, 59, 1891117, 15, 551427, 23, 49771, 39, 4105015, 8, 8, 24673, 41, 75585293, 25, 9095891, 989, 17, 386, 6445, 87, 771, 1385
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

This equation can also be written as (2*a(n) - b(n))^2 - D(n)*b(n)^2 = +4 or -4 with D(n) := A077425(n) = 1 + 4*G(n).
This is from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values which solve the above mentioned Diophantine equations.
For Pell equation x^2 - D*y^2 = +4, see A077428 and A078355. For Pell equation x^2 - D*y^2 = -4, see A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Programs

  • Mathematica
    g[n_] := Ceiling[Sqrt[n]] + n - 1; r[n_] := Reduce[an > 0 && bn > 0 && (an ^2 - an*bn - g[n]*bn^2 == 1 || an^2 - an*bn - g[n]*bn^2 == - 1), {an, bn}, Integers] /. C -> c; ab[n_] := DeleteCases[ Flatten[ Table[{an, bn} /. {ToRules[r[n]]} // Simplify, {c[1], 0, 1}], 1], an | bn]; a[n_] := a[n] = Min[ab[n][[All, 1]]]; Table[Print[{n, a[n]}]; a[n], {n, 1, 62}] (* Jean-François Alcover, Oct 04 2012 *)

Formula

a(n) = (A078361(n) + A077058(n)) / 2. [Max Alekseyev, Feb 06 2010]

Extensions

More terms from Max Alekseyev, Feb 06 2010
a(9), a(33), a(54) corrected (after notice by Jean-François Alcover); a(58) through a(62) added. - Wolfdieter Lang, Oct 04 2012
Showing 1-10 of 13 results. Next