A264901 Sorted powers C^z = A^x + B^y with all positive integers and x,y,z > 2, with multiplicity.
16, 32, 64, 64, 128, 128, 128, 243, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2744, 4096, 4096, 4096, 4096, 6561, 6561, 6561, 6561, 8192, 8192, 8192, 8192, 8192, 8192
Offset: 1
Examples
128 = 64 + 64 ==> 2^7 = 2^6 + 2^6 = 2^6 + 4^3 = 4^3 + 4^3 (but not 4^3 + 2^6).
Links
- Anatoly E. Voevudko, Table of n, a(n) for n = 1..615
- American Mathematical Society, Beal Prize
- Anatoly E. Voevudko, Description of all powers in b245713
- Anatoly E. Voevudko, Description of all powers in b261782
- Anatoly E. Voevudko, Description of all powers in b264901
- Wikipedia, Beal's conjecture
Programs
-
PARI
b264901(lim)= {my(Lc=List(1),Lb=List(),La=Lb,czn,lan,lbn,lcn,lim2=logint(lim,2),lim3); for(z=3,lim2,lim3=sqrtnint(lim, z); for(C=2,lim3, listput(Lc, C^z))); lcn=#Lc; if(lcn==0, return(-1)); for(i=1,lcn, for(j=i,lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next); La=findinlista(Lc,czn); lan=#La; if(!lan, next); for(k=1,lan, listput(Lb, czn));)); lbn=#Lb; listsort(Lb); for(i=1,lbn, print(i," ",Lb[i]))} findinlista(list, item, sind=1)= {my(ln=#list, Li=List()); if(ln==0 || sind<1 || sind>ln, return(Li)); for(i=sind, ln, if(list[i]==item, listput(Li,i))); return(Li);}
Comments