cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Anatoly E. Voevudko

Anatoly E. Voevudko's wiki page.

Anatoly E. Voevudko has authored 5 sequences.

A264901 Sorted powers C^z = A^x + B^y with all positive integers and x,y,z > 2, with multiplicity.

Original entry on oeis.org

16, 32, 64, 64, 128, 128, 128, 243, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2744, 4096, 4096, 4096, 4096, 6561, 6561, 6561, 6561, 8192, 8192, 8192, 8192, 8192, 8192
Offset: 1

Author

Anatoly E. Voevudko, Nov 28 2015

Keywords

Comments

We do not distinguish between the representations C^z = A^x + B^y and C^z = B^y + A^x.
This sequence is based on the type of equation involved in Beal's conjecture.

Examples

			128 = 64 + 64 ==> 2^7 = 2^6 + 2^6 = 2^6 + 4^3 = 4^3 + 4^3 (but not 4^3 + 2^6).
		

Crossrefs

Programs

  • PARI
    b264901(lim)=
    {my(Lc=List(1),Lb=List(),La=Lb,czn,lan,lbn,lcn,lim2=logint(lim,2),lim3);
    for(z=3,lim2,lim3=sqrtnint(lim, z); for(C=2,lim3, listput(Lc, C^z)));
    lcn=#Lc; if(lcn==0, return(-1));
    for(i=1,lcn, for(j=i,lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);
    La=findinlista(Lc,czn); lan=#La; if(!lan, next);
    for(k=1,lan, listput(Lb, czn));)); lbn=#Lb; listsort(Lb);
    for(i=1,lbn, print(i," ",Lb[i]))}
    findinlista(list, item, sind=1)=
    {my(ln=#list, Li=List()); if(ln==0 || sind<1 || sind>ln, return(Li));
    for(i=sind, ln, if(list[i]==item, listput(Li,i))); return(Li);}

A265732 Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, with multiplicity.

Original entry on oeis.org

8, 9, 16, 16, 25, 25, 32, 32, 32, 36, 36, 64, 64, 64, 81, 81, 100, 100, 100, 125, 125, 128, 128, 128, 128, 128, 128, 144, 144, 169, 196, 225, 225, 225, 225, 243, 256, 256, 256, 289, 289, 289, 324, 324, 324, 343, 400, 400, 400, 441, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 576
Offset: 1

Author

Anatoly E. Voevudko, Dec 14 2015

Keywords

Comments

We do not distinguish between the equations C^z = A^x + B^y and C^z = B^y + A^x.
This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course with additional restrictions and conditions.

Examples

			128 = 64 + 64 ==> 2^7 = 8^2 + 8^2 = 8^2 + 4^3 = 8^2 + 2^6 = 4^3 + 4^3 = 4^3 + 2^6 = 2^6 + 2^6 (but not 4^3 + 8^2, 2^6 + 8^2, 2^6 + 4^3).
		

Crossrefs

Programs

  • PARI
    A265732(lim,bflag=0)=
    {my(Lc=List(1),Lb=List(),La=Lb,czn,lcn,lan,lim2=logint(lim,2),lim3,k);
    for(z=2,lim2,lim3=sqrtnint(lim,z); for(C=2,lim3,listput(Lc,C^z)) );
    lcn = #Lc; if(lcn==0,return(-1));
    for(i=1,lcn, for(j=i,lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);
    La=findinlista(Lc, czn); lan=#La; if(!lan, next);
    for(k=1,lan, listput(Lb, czn)))); lcn=#Lb; listsort(Lb,0);
    if(bflag,for(i=1,lcn,print(i ," ",Lb[i]))); if(!bflag,return(Vec(Lb)));
    }
    findinlista(list, item, sind=1)={my(ln=#list, Li=List());
    if(ln==0||sind<1||sind>ln, return(Li));
    for(i=sind, ln, if(list[i]==item, listput(Li,i))); return(Li);
    } \\ Anatoly E. Voevudko, Nov 23 2015

A265731 Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, without multiplicity.

Original entry on oeis.org

8, 9, 16, 25, 32, 36, 64, 81, 100, 125, 128, 144, 169, 196, 225, 243, 256, 289, 324, 343, 400, 441, 512, 576, 625, 676, 784, 841, 900, 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1521, 1600, 1681, 1728, 1764, 1849, 2025, 2048, 2197, 2304, 2500, 2601, 2704, 2744, 2809, 2916, 3025, 3125
Offset: 1

Author

Anatoly E. Voevudko, Dec 14 2015

Keywords

Comments

This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course, with additional restrictions and conditions.

Examples

			8 = 2^3 = 2^2 + 2^2; 9 = 3^2 = 1^3 + 2^3; 16 = 4^2 = 2^3 + 2^3; etc.
		

Crossrefs

Programs

  • PARI
    A265731(lim,bflag=0)={my(Lcz=List(1),Lb=List(),czn,lczn,lbn,lim2=logint(lim, 2),lim3);
    for(z=2, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lcz, C^z)));
    Lcz=Set(Lcz); lczn = #Lcz; if(lczn==0,return(-1));
    for(i=1, lczn, for(j=i, lczn, czn=Lcz[i]+Lcz[j]; if(czn>lim, break);
    if(setsearch(Lcz, czn), listput(Lb, czn)))); listsort(Lb,1);  lbn=#Lb;
    if(bflag, for(i=1,lbn,print(i , " ", Lb[i]))); if(!bflag,return(Vec(Lb))); }
    \\ Anatoly E. Voevudko, Nov 23 2015

A261782 Powers C^z = A^x + B^y with positive integers A,B,C,x,y,z such that x,y,z > 2.

Original entry on oeis.org

16, 32, 64, 128, 243, 256, 512, 1024, 2048, 2744, 4096, 6561, 8192, 16384, 32768, 65536, 131072, 177147, 185193, 262144, 474552, 524288, 614656, 810000, 941192, 1048576, 1124864, 1419857, 1500625, 2097152, 3241792, 4194304
Offset: 1

Author

Anatoly E. Voevudko, Aug 31 2015

Keywords

Comments

Beal's conjecture states that A, B, and C have a common prime factor.
Theorem. If A, B are odd and x, y are even, Beal's conjecture has no counterexample. Proof: Let D be odd, D > 1 and let w be even, w > 2. Then D^w == 9 (mod 24) while D == 0 (mod 3); otherwise, D^w == 1 (mod 24) (trivial). Any even C^z == {0; 8; 16} (mod 24): if C == 0 (mod 3), C^z == 0 (mod 24); if C == 1 (mod 3), C^z == 16 (mod 24); if C == 2 (mod 3), C^z == 8 (mod 24), while z is odd, and C^z == 16 (mod 24), while z is even (trivial). But C^z == (x'+y') (mod 24) where A^x = x' (mod 24), B^y = y' (mod 24); since (x'+y') = {2; 10; 18}, C^z == {2; 10; 18} (mod 24), which cannot be a counterexample to Beal's conjecture. - Sergey Pavlov, May 08 2021

Examples

			2^3 + 2^3 = 2^4 = 16, so 16 is in the sequence.
		

Crossrefs

Subsequence of A076467.
Cf. A245713.

Programs

  • PARI
    is(n)=if(ispower(n)<3, return(0)); for(x=3,logint((n+1)\2,2), for(A=2,sqrtnint(n,x), if(ispower(n-A^x)>2, return(1)))); 0 \\ Charles R Greathouse IV, Sep 03 2015
    
  • PARI
    list(lim)=my(v=List(),u=v,t); for(z=3,logint(lim\=1,2), for(C=2,sqrtnint(lim,z), listput(v,C^z))); v=Set(v); for(i=1,#v, for(j=i,#v, t=v[i]+v[j]; if(t>lim, break); if(setsearch(v,t), listput(u,t)))); Set(u) \\ Charles R Greathouse IV, Sep 03 2015

A245713 Sorted imperfect powers b^p with b > 0, p > 2, with multiplicity.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 64, 81, 125, 128, 216, 243, 256, 256, 343, 512, 512, 625, 729, 729, 1000, 1024, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4096, 4096, 4096, 4913, 5832, 6561, 6561, 6859, 7776, 8000, 8192, 9261
Offset: 1

Author

Anatoly E. Voevudko, Jul 30 2014

Keywords

Comments

No multiple terms for b=1.
This sequence strictly follows requirements of the Beal conjecture.
Less than 550 of these powers satisfy 196 Beal's conjecture equations.

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    L:= [1, seq(seq(b^p, p=3..floor(log[b](N))),b=2..floor(N^(1/3)))]:
    sort(L); # Robert Israel, Nov 09 2015
  • Mathematica
    mx = 10000; Join[{1}, Sort@ Flatten@ Table[b^p, {b, 2, Sqrt@ mx}, {p, 3, Log[b, mx]}]] (* Robert G. Wilson v, Nov 09 2015 *)
  • PARI
    A245713(lim)={my(L=List(1),lim2=logint(lim,2));for(p=3,lim2, for(b=2,sqrtnint(lim,p),listput(L, b^p);));listsort(L); print(L);} \\ Anatoly E. Voevudko, Sep 21 2015