A261782 Powers C^z = A^x + B^y with positive integers A,B,C,x,y,z such that x,y,z > 2.
16, 32, 64, 128, 243, 256, 512, 1024, 2048, 2744, 4096, 6561, 8192, 16384, 32768, 65536, 131072, 177147, 185193, 262144, 474552, 524288, 614656, 810000, 941192, 1048576, 1124864, 1419857, 1500625, 2097152, 3241792, 4194304
Offset: 1
Keywords
Examples
2^3 + 2^3 = 2^4 = 16, so 16 is in the sequence.
Links
- Anatoly E. Voevudko and Charles R Greathouse IV, Table of n, a(n) for n = 1..1229 (first 196 terms from Voevudko)
- American Mathematical Society, Beal Prize
- Anatoly E. Voevudko, Description of all powers in b245713
- Anatoly E. Voevudko, Description of all powers in b261782
- Wikipedia, Beal's conjecture
Programs
-
PARI
is(n)=if(ispower(n)<3, return(0)); for(x=3,logint((n+1)\2,2), for(A=2,sqrtnint(n,x), if(ispower(n-A^x)>2, return(1)))); 0 \\ Charles R Greathouse IV, Sep 03 2015
-
PARI
list(lim)=my(v=List(),u=v,t); for(z=3,logint(lim\=1,2), for(C=2,sqrtnint(lim,z), listput(v,C^z))); v=Set(v); for(i=1,#v, for(j=i,#v, t=v[i]+v[j]; if(t>lim, break); if(setsearch(v,t), listput(u,t)))); Set(u) \\ Charles R Greathouse IV, Sep 03 2015
Comments