A141759 a(n) = 16n^2 + 32n + 15.
15, 63, 143, 255, 399, 575, 783, 1023, 1295, 1599, 1935, 2303, 2703, 3135, 3599, 4095, 4623, 5183, 5775, 6399, 7055, 7743, 8463, 9215, 9999, 10815, 11663, 12543, 13455, 14399, 15375, 16383, 17423, 18495, 19599, 20735, 21903, 23103, 24335, 25599
Offset: 0
References
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed., 1965, ch. 4.1.8.
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(4*n+3)*(4*n+5): n in [0..50]]; // Vincenzo Librandi, Sep 22 2011
-
Maple
A141759:=n->16*n^2 + 32*n + 15: seq(A141759(n), n=0..60);
-
Mathematica
LinearRecurrence[{3, -3, 1}, {15, 63, 143}, 50] (* Vincenzo Librandi, Feb 09 2012 *)
-
PARI
a(n)=n*(n+2)<<4+15 \\ Charles R Greathouse IV, Oct 27 2011
Formula
G.f.: (15+18*x-x^2)/(1-x)^3.
E.g.f.: (15+48*x+16*x^2)*exp(x).
a(n) = a(-n-2) = A016802(n+1) - 1. - Bruno Berselli, Sep 22 2011
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = Pi/(2*sqrt(2)) (A093954).
Product_{n>=0} (1 - 1/a(n)) = sin(Pi/(2*sqrt(2))). (End)
Extensions
Formula indices corrected by R. J. Mathar, Jul 07 2009
Comments