A213080 Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)).
1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8
Offset: 1
Examples
1.04633506677050318098095065697776037101974218113264442441587534042035751563744...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Michael D. Hirschhorn, On the asymptotic behavior of Product_{k=0..n} C(n,k), Fib. Q., 51 (2013), 163-173.
- Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, Integers 9 (2009), Article #A08, 83-106; alternative link; arXiv:0604505 [math.NT], 2006.
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
Programs
-
Maple
exp(2*Zeta(1,-1)-1/12)*(2*Pi)^(1/4); evalf(%,100); # Peter Luschny, Jun 22 2012
-
Mathematica
RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *)
-
PARI
exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013
-
Sage
import mpmath mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision mpmath.exp(2*mpmath.zeta(-1,1,1)-1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012
Formula
Equals (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 where A denotes the Glaisher-Kinkelin constant.
Equals exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4).
A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439... - Peter Luschny, Jun 22 2012
The sqrt of the constant equals Limit_{n>=1} (Product_{k=1..n-1} k!) / f(n) where f(n) = (2*Pi)^(n/2-1/8)*exp(1/24-3/4*n^2)*n^(1/2*n^2-1/12). - Peter Luschny, Jun 23 2012
Comments