cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A147878 The number of degree sequences with degree sum 2n representable by a connected graph (with multiple edges allowed).

Original entry on oeis.org

1, 2, 5, 11, 23, 46, 86, 156, 273, 463, 766, 1241, 1969, 3073, 4723, 7157, 10711, 15850, 23206, 33654, 48373, 68955, 97544, 137002, 191125, 264955, 365127, 500349, 682018, 924982, 1248502, 1677530, 2244229, 2989952, 3967732, 5245354, 6909211
Offset: 1

Views

Author

James Sellers, Nov 16 2008

Keywords

Examples

			From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 23 connected multigraphical partitions:
  (11)  (22)   (33)    (44)     (55)
        (211)  (222)   (332)    (433)
               (321)   (422)    (442)
               (2211)  (431)    (532)
               (3111)  (2222)   (541)
                       (3221)   (3322)
                       (3311)   (3331)
                       (4211)   (4222)
                       (22211)  (4321)
                       (32111)  (4411)
                       (41111)  (5221)
                                (5311)
                                (22222)
                                (32221)
                                (33211)
                                (42211)
                                (43111)
                                (52111)
                                (222211)
                                (322111)
                                (331111)
                                (421111)
                                (511111)
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): seq(numbpart(2*m) - numbpart(m - 1) - 2*add(numbpart(j), j = 0 .. m-2), m=1..60);
  • PARI
    a(n) = numbpart(2*n) - numbpart(n-1) - 2*sum(j=0, n-2, numbpart(j)); \\ Michel Marcus, Nov 04 2016

Formula

a(n) = p(2n) - p(n-1) - 2*Sum_{j=0..n-2} p(j).
a(n) = A000041(2*n) - 2*A000070(n) + 2*A000041(n) + A000041(n-1). - Vaclav Kotesovec, Nov 05 2016
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*sqrt(3)*n) * (1 - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) /sqrt(n)). - Vaclav Kotesovec, Nov 05 2016

Extensions

Offset corrected by Michel Marcus, Nov 04 2016
Showing 1-1 of 1 results.