cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A107154 Duplicate of A141373.

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371
Offset: 1

Views

Author

Keywords

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Crossrefs

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A107003 Primes of the form 24n + 5.

Original entry on oeis.org

5, 29, 53, 101, 149, 173, 197, 269, 293, 317, 389, 461, 509, 557, 653, 677, 701, 773, 797, 821, 941, 1013, 1061, 1109, 1181, 1229, 1277, 1301, 1373, 1493, 1613, 1637, 1709, 1733, 1877, 1901, 1949, 1973, 1997, 2069, 2141, 2213, 2237, 2309, 2333, 2357, 2381, 2477
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Primes of the form 5x^2+2xy+5y^2, with x and y any integer. Discriminant=-96. Also primes of the forms 5x^2+4xy+20y^2 and 5x^2+2xy+29y^2. See A140633. - T. D. Noe, May 19 2008
Also primes of the form -4*x^2+4*x*y+5*y^2, of discriminant -96 (as well as of the form 8*x^2+16*x*y+5*y^2). - Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Examples

			29 is a member because we can write 29=-4*4^2+4*4*3+5*3^2 (or 29=8*1^2+16*1*1+5*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Cf. A141373, A141375, A141376 (d = -96).

Programs

  • Mathematica
    Union[QuadPrimes2[5, 2, 5, 10000], QuadPrimes2[5, -2, 5, 10000]] (* see A106856 *)
    Select[24*Range[0,200]+5,PrimeQ] (* Harvey P. Dale, Aug 25 2025 *)
  • PARI
    select(n->n%24==5, primes(1000)) \\ Charles R Greathouse IV, Dec 07 2014

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Dec 07 2014

Extensions

Name and comment switched by Charles R Greathouse IV, Dec 07 2014
Edited by N. J. A. Sloane, Jul 14 2019

A014557 Multiplicity of K_3 in K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, 52, 70, 88, 112, 136, 168, 200, 240, 280, 330, 380, 440, 500, 572, 644, 728, 812, 910, 1008, 1120, 1232, 1360, 1488, 1632, 1776, 1938, 2100, 2280, 2460, 2660, 2860, 3080, 3300, 3542, 3784, 4048, 4312, 4600, 4888, 5200
Offset: 0

Views

Author

Keywords

Comments

The multiplicity of triangles in K_n is defined to be the minimum number of monochromatic copies of K_3 that occur in any 2-coloring of the edges of K_n. - Allan Bickle, Mar 04 2023
Twice A008804 (up to offset).
From Alexander Adamchuk, Nov 29 2006: (Start)
n divides a(n) for n = {1,2,3,4,5,8,10,13,14,16,17,20,22,25,26,28,29,32,34,37,38,40,41,44,46,49,50,52,53,56,58,61,62,64,65,68,70,73,74,76,77,80,82,85,86,88,89,92,94,97,98,100,...}.
Prime p divides a(p) for p = {2,3,5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193,197,...} = (2,3) and all primes from A002144: Pythagorean primes: primes of form 4n+1.
(n+1) divides a(n) for n = {1,2,3,4,5,19,27,43,51,67,75,91,99,...}.
(p+1) divides a(p) for prime p = {2,3,5,19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,643,691,739,787,811,859,883,907,...} = {2,5} and all primes from A141373: Primes of the form 3x^2+16y^2.
(n-1) divides a(n) for n = {2,3,4,5,21,29,45,53,69,77,93,101,...}.
(p-1) divides a(p) for prime p = {2,3,5,29,53,101,149,173,197,269,293,317,389,461,509,557,653,677,701,773,797,821,941,..} = {2,3} and all primes from A107003: Primes of the form 5x^2+2xy+5y^2, with x and y any integer.
(n-2) divides a(n) for n = {3,4,5,12,16,24,28,36,40,48,52,60,64,72,76,84,88,96,100,...} = {3,5} and 4*A032766: Numbers congruent to 0 or 1 mod 3.
(n+3) divides a(n) for n = {1,2,3,4,5,9,11,18,32,39}.
(n-3) divides a(n) for n = {4,5,7,9,23,31,47,55,71,79,95,103,119,127,143,151,167,175,...}.
(p+3) divides a(p) for prime p = {5,7,23,31,47,71,79,103,127,151,167,191,199,...} = {5} and all primes from A007522: Primes of form 8n+7.
(n-4) divides a(n) for n = {5,6,8,11,12,14,15,18,20,23,24,26,27,30,32,35,36,38,39,42,44,47,48,50,...}.
(p-4) divides a(p) for prime p = {5,11,23,47,59,71,83,107,131,167,179,191,...} = {5} and all primes from A068231: Primes congruent to 11 (mod 12).
(n+5) divides a(n) for n = {1,2,3,4,5,30,31,45,58,145}.
(n-5) divides a(n) for n = {6,7,9,10,20,25,33,49,57,73,81,97,105,...}.
(p-5) divides a(p) for prime p = {7,73,97,193,241,313,337,409,433,457,577,601,673,769,937,...} = {7} and all primes from A107008: Primes of the form x^2+24y^2. (End)

Examples

			Any 2-coloring of the edges of K_6 produces at least two monochromatic triangles.  Having colors induce K_3,3 and 2K_3 shows this is attained, so a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)/6 - Floor((n/2)*Floor(((n-1)/2)^2)): n in [1..20]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A049322 := proc(n) local u; if n mod 2 = 0 then u := n/2; RETURN(u*(u-1)*(u-2)/3); elif n mod 4 = 1 then u := (n-1)/4; RETURN(u*(u-1)*(4*u+1)*2/3); else u := (n-3)/4; RETURN(u*(u+1)*(4*u-1)*2/3); fi; end;
  • Mathematica
    Table[Binomial[n,3] - Floor[n/2*Floor[((n-1)/2)^2]],{n,0,100}] (* Alexander Adamchuk, Nov 29 2006 *)
  • PARI
    x='x+O('x^99); concat(vector(6), Vec(2*x^6/((x-1)^4*(x+1)^2*(x^2+1)))) \\ Altug Alkan, Apr 08 2016
    

Formula

a(n) = binomial(n,3) - floor(n/2 * floor(((n-1)/2)^2)). - Alexander Adamchuk, Nov 29 2006
G.f.: 2*x^6/((x-1)^4*(x+1)^2*(x^2+1)). - Colin Barker, Nov 28 2012
E.g.f.: ((x - 3)*x^2*cosh(x) - 6*sin(x) + (6 + 3*x - 3*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, May 15 2023

Extensions

Entry revised by N. J. A. Sloane, Mar 22 2004

A141375 Primes of the form x^2 + 8*x*y - 8*y^2 (as well as of the form x^2 + 10*x*y + y^2).

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713, 2833, 2857
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Conjecture: Same as A107008. - Arkadiusz Wesolowski, Jul 25 2012
Discriminant = +96.
x^2 + 8*x*y - 8*y^2 = (x+4*y)^2 - 24*y^2, and x^2 + 10*x*y + y^2 = (x+5*y)^2 - 24*y^2, so this sequence is also primes of the form x^2 - 24*y^2. - Michael Somos, Jun 05 2013

Examples

			a(1) = 73 because we can write 73 = 5^2 + 8*5*2 - 8*2^2 (or 73 = 2^2 + 10*2*3 + 3^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Cf. A107008, A141373, A107003, A141376 (d = -96).

Programs

  • Mathematica
    Union[Select[Flatten[Table[x^2 + 8*x*y - 8*y^2, {x, 40}, {y, 40}]], # > 0 && PrimeQ[#] &]] (* T. D. Noe, Jun 12 2013 *)

Extensions

More terms and offset corrected by Arkadiusz Wesolowski, Jul 25 2012

A141376 Primes of the form -x^2 + 8*x*y + 8*y^2 (as well as of the form 15*x^2 + 24*x*y + 8*y^2).

Original entry on oeis.org

23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Discriminant = +96.
Values of the quadratic form are {0, 8, 12, 15, 20, 23} mod 24, so this is a subsequence of A134517. - R. J. Mathar, Jul 30 2008
Is this the same sequence as A134517?
Substituting 2y = y' gives the quadratic form A141171, so these terms are a subsequence of the terms in A141171. - R. J. Mathar, Jun 10 2020

Examples

			a(2)=47 because we can write 47 = -1^2 + 8*1*2 + 8*2^2 (or 47 = 15*1^2 + 24*1*1 + 8*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Extensions

More terms from Arkadiusz Wesolowski, Jul 25 2012

A139527 Numbers n such that numbers 24n+5 are primes.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 11, 12, 13, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 39, 42, 44, 46, 49, 51, 53, 54, 57, 62, 67, 68, 71, 72, 78, 79, 81, 82, 83, 86, 89, 92, 93, 96, 97, 98, 99, 103, 106, 109, 112, 114, 116, 118, 119, 121, 123, 134, 141, 142, 144, 147, 148, 149, 153, 154
Offset: 1

Views

Author

Artur Jasinski, Apr 25 2008

Keywords

Comments

Numbers n such that:
24n+1 is prime see A111174, primes 24n+1 see A107008
24n+5 is prime see A139527, primes 24n+5 see A107003
24n+7 is prime see A139483, primes 24n+7 see A107006
24n+11 is prime A139528, primes 24n+11 see A107007
24n+13 is prime see A139529, primes 24n+13 see A139530
24n+17 is prime see A139531, primes 24n+17 see A107181
24n+19 is prime see A139532, primes 24n+19 see A141373
24n+23 is prime see A131210, primes 24n+23 see A134517

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Table[(Prime[n]-5)/24,{n,800}],IntegerQ] (* Harvey P. Dale, Feb 25 2016 *)
Showing 1-8 of 8 results.