cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A134517 Primes of the form 24*k - 1.

Original entry on oeis.org

23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
Offset: 1

Views

Author

Zak Seidov, Oct 29 2007

Keywords

Comments

Corresponding values of k are in A131210.
Is this the same sequence as A141376?
Primes in A183010. - Omar E. Pol, Oct 08 2011
Inert rational primes in the fields Q(sqrt(-1)), Q(sqrt(-2)), Q(sqrt(-3)). - Eyal Gruss, Nov 30 2022

Crossrefs

Intersection of A002145, A003627, A045355.

Programs

  • GAP
    Filtered(List([1..120],n->24*n-1),IsPrime); # Muniru A Asiru, Mar 04 2018
    
  • Maple
    select(isprime,[seq(24*n-1,n=1..120)]); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    Select[Prime[Range[1000]],Mod[ #,24]==23&]
    Select[24*Range[200]-1,PrimeQ] (* Harvey P. Dale, Jun 17 2018 *)
  • PARI
    lista(nn) = for(k=1, nn, if(isprime(p=24*k-1), print1(p", "))) \\ Altug Alkan, Mar 04 2018

Formula

a(n) = A183010(A131210(n)). - Omar E. Pol, Nov 04 2017

A107003 Primes of the form 24n + 5.

Original entry on oeis.org

5, 29, 53, 101, 149, 173, 197, 269, 293, 317, 389, 461, 509, 557, 653, 677, 701, 773, 797, 821, 941, 1013, 1061, 1109, 1181, 1229, 1277, 1301, 1373, 1493, 1613, 1637, 1709, 1733, 1877, 1901, 1949, 1973, 1997, 2069, 2141, 2213, 2237, 2309, 2333, 2357, 2381, 2477
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Primes of the form 5x^2+2xy+5y^2, with x and y any integer. Discriminant=-96. Also primes of the forms 5x^2+4xy+20y^2 and 5x^2+2xy+29y^2. See A140633. - T. D. Noe, May 19 2008
Also primes of the form -4*x^2+4*x*y+5*y^2, of discriminant -96 (as well as of the form 8*x^2+16*x*y+5*y^2). - Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Examples

			29 is a member because we can write 29=-4*4^2+4*4*3+5*3^2 (or 29=8*1^2+16*1*1+5*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Cf. A141373, A141375, A141376 (d = -96).

Programs

  • Mathematica
    Union[QuadPrimes2[5, 2, 5, 10000], QuadPrimes2[5, -2, 5, 10000]] (* see A106856 *)
    Select[24*Range[0,200]+5,PrimeQ] (* Harvey P. Dale, Aug 25 2025 *)
  • PARI
    select(n->n%24==5, primes(1000)) \\ Charles R Greathouse IV, Dec 07 2014

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Dec 07 2014

Extensions

Name and comment switched by Charles R Greathouse IV, Dec 07 2014
Edited by N. J. A. Sloane, Jul 14 2019

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Views

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A141375 Primes of the form x^2 + 8*x*y - 8*y^2 (as well as of the form x^2 + 10*x*y + y^2).

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713, 2833, 2857
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Conjecture: Same as A107008. - Arkadiusz Wesolowski, Jul 25 2012
Discriminant = +96.
x^2 + 8*x*y - 8*y^2 = (x+4*y)^2 - 24*y^2, and x^2 + 10*x*y + y^2 = (x+5*y)^2 - 24*y^2, so this sequence is also primes of the form x^2 - 24*y^2. - Michael Somos, Jun 05 2013

Examples

			a(1) = 73 because we can write 73 = 5^2 + 8*5*2 - 8*2^2 (or 73 = 2^2 + 10*2*3 + 3^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Cf. A107008, A141373, A107003, A141376 (d = -96).

Programs

  • Mathematica
    Union[Select[Flatten[Table[x^2 + 8*x*y - 8*y^2, {x, 40}, {y, 40}]], # > 0 && PrimeQ[#] &]] (* T. D. Noe, Jun 12 2013 *)

Extensions

More terms and offset corrected by Arkadiusz Wesolowski, Jul 25 2012
Showing 1-4 of 4 results.