cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A141374 Duplicate of A107003.

Original entry on oeis.org

5, 29, 53, 101, 149, 173, 197, 269, 293, 317, 389, 461, 509, 557, 653, 677, 701, 773, 797, 821, 941, 1013, 1061, 1109, 1181, 1229, 1277, 1301, 1373, 1493, 1613, 1637, 1709, 1733, 1877, 1901, 1949, 1973, 1997, 2069, 2141, 2213, 2237, 2309, 2333, 2357, 2381, 2477
Offset: 1

Views

Author

Keywords

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Crossrefs

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Views

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A014557 Multiplicity of K_3 in K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, 52, 70, 88, 112, 136, 168, 200, 240, 280, 330, 380, 440, 500, 572, 644, 728, 812, 910, 1008, 1120, 1232, 1360, 1488, 1632, 1776, 1938, 2100, 2280, 2460, 2660, 2860, 3080, 3300, 3542, 3784, 4048, 4312, 4600, 4888, 5200
Offset: 0

Views

Author

Keywords

Comments

The multiplicity of triangles in K_n is defined to be the minimum number of monochromatic copies of K_3 that occur in any 2-coloring of the edges of K_n. - Allan Bickle, Mar 04 2023
Twice A008804 (up to offset).
From Alexander Adamchuk, Nov 29 2006: (Start)
n divides a(n) for n = {1,2,3,4,5,8,10,13,14,16,17,20,22,25,26,28,29,32,34,37,38,40,41,44,46,49,50,52,53,56,58,61,62,64,65,68,70,73,74,76,77,80,82,85,86,88,89,92,94,97,98,100,...}.
Prime p divides a(p) for p = {2,3,5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193,197,...} = (2,3) and all primes from A002144: Pythagorean primes: primes of form 4n+1.
(n+1) divides a(n) for n = {1,2,3,4,5,19,27,43,51,67,75,91,99,...}.
(p+1) divides a(p) for prime p = {2,3,5,19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,643,691,739,787,811,859,883,907,...} = {2,5} and all primes from A141373: Primes of the form 3x^2+16y^2.
(n-1) divides a(n) for n = {2,3,4,5,21,29,45,53,69,77,93,101,...}.
(p-1) divides a(p) for prime p = {2,3,5,29,53,101,149,173,197,269,293,317,389,461,509,557,653,677,701,773,797,821,941,..} = {2,3} and all primes from A107003: Primes of the form 5x^2+2xy+5y^2, with x and y any integer.
(n-2) divides a(n) for n = {3,4,5,12,16,24,28,36,40,48,52,60,64,72,76,84,88,96,100,...} = {3,5} and 4*A032766: Numbers congruent to 0 or 1 mod 3.
(n+3) divides a(n) for n = {1,2,3,4,5,9,11,18,32,39}.
(n-3) divides a(n) for n = {4,5,7,9,23,31,47,55,71,79,95,103,119,127,143,151,167,175,...}.
(p+3) divides a(p) for prime p = {5,7,23,31,47,71,79,103,127,151,167,191,199,...} = {5} and all primes from A007522: Primes of form 8n+7.
(n-4) divides a(n) for n = {5,6,8,11,12,14,15,18,20,23,24,26,27,30,32,35,36,38,39,42,44,47,48,50,...}.
(p-4) divides a(p) for prime p = {5,11,23,47,59,71,83,107,131,167,179,191,...} = {5} and all primes from A068231: Primes congruent to 11 (mod 12).
(n+5) divides a(n) for n = {1,2,3,4,5,30,31,45,58,145}.
(n-5) divides a(n) for n = {6,7,9,10,20,25,33,49,57,73,81,97,105,...}.
(p-5) divides a(p) for prime p = {7,73,97,193,241,313,337,409,433,457,577,601,673,769,937,...} = {7} and all primes from A107008: Primes of the form x^2+24y^2. (End)

Examples

			Any 2-coloring of the edges of K_6 produces at least two monochromatic triangles.  Having colors induce K_3,3 and 2K_3 shows this is attained, so a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)/6 - Floor((n/2)*Floor(((n-1)/2)^2)): n in [1..20]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A049322 := proc(n) local u; if n mod 2 = 0 then u := n/2; RETURN(u*(u-1)*(u-2)/3); elif n mod 4 = 1 then u := (n-1)/4; RETURN(u*(u-1)*(4*u+1)*2/3); else u := (n-3)/4; RETURN(u*(u+1)*(4*u-1)*2/3); fi; end;
  • Mathematica
    Table[Binomial[n,3] - Floor[n/2*Floor[((n-1)/2)^2]],{n,0,100}] (* Alexander Adamchuk, Nov 29 2006 *)
  • PARI
    x='x+O('x^99); concat(vector(6), Vec(2*x^6/((x-1)^4*(x+1)^2*(x^2+1)))) \\ Altug Alkan, Apr 08 2016
    

Formula

a(n) = binomial(n,3) - floor(n/2 * floor(((n-1)/2)^2)). - Alexander Adamchuk, Nov 29 2006
G.f.: 2*x^6/((x-1)^4*(x+1)^2*(x^2+1)). - Colin Barker, Nov 28 2012
E.g.f.: ((x - 3)*x^2*cosh(x) - 6*sin(x) + (6 + 3*x - 3*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, May 15 2023

Extensions

Entry revised by N. J. A. Sloane, Mar 22 2004

A141375 Primes of the form x^2 + 8*x*y - 8*y^2 (as well as of the form x^2 + 10*x*y + y^2).

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713, 2833, 2857
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Conjecture: Same as A107008. - Arkadiusz Wesolowski, Jul 25 2012
Discriminant = +96.
x^2 + 8*x*y - 8*y^2 = (x+4*y)^2 - 24*y^2, and x^2 + 10*x*y + y^2 = (x+5*y)^2 - 24*y^2, so this sequence is also primes of the form x^2 - 24*y^2. - Michael Somos, Jun 05 2013

Examples

			a(1) = 73 because we can write 73 = 5^2 + 8*5*2 - 8*2^2 (or 73 = 2^2 + 10*2*3 + 3^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Cf. A107008, A141373, A107003, A141376 (d = -96).

Programs

  • Mathematica
    Union[Select[Flatten[Table[x^2 + 8*x*y - 8*y^2, {x, 40}, {y, 40}]], # > 0 && PrimeQ[#] &]] (* T. D. Noe, Jun 12 2013 *)

Extensions

More terms and offset corrected by Arkadiusz Wesolowski, Jul 25 2012

A141376 Primes of the form -x^2 + 8*x*y + 8*y^2 (as well as of the form 15*x^2 + 24*x*y + 8*y^2).

Original entry on oeis.org

23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Discriminant = +96.
Values of the quadratic form are {0, 8, 12, 15, 20, 23} mod 24, so this is a subsequence of A134517. - R. J. Mathar, Jul 30 2008
Is this the same sequence as A134517?
Substituting 2y = y' gives the quadratic form A141171, so these terms are a subsequence of the terms in A141171. - R. J. Mathar, Jun 10 2020

Examples

			a(2)=47 because we can write 47 = -1^2 + 8*1*2 + 8*2^2 (or 47 = 15*1^2 + 24*1*1 + 8*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Extensions

More terms from Arkadiusz Wesolowski, Jul 25 2012

A139527 Numbers n such that numbers 24n+5 are primes.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 11, 12, 13, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 39, 42, 44, 46, 49, 51, 53, 54, 57, 62, 67, 68, 71, 72, 78, 79, 81, 82, 83, 86, 89, 92, 93, 96, 97, 98, 99, 103, 106, 109, 112, 114, 116, 118, 119, 121, 123, 134, 141, 142, 144, 147, 148, 149, 153, 154
Offset: 1

Views

Author

Artur Jasinski, Apr 25 2008

Keywords

Comments

Numbers n such that:
24n+1 is prime see A111174, primes 24n+1 see A107008
24n+5 is prime see A139527, primes 24n+5 see A107003
24n+7 is prime see A139483, primes 24n+7 see A107006
24n+11 is prime A139528, primes 24n+11 see A107007
24n+13 is prime see A139529, primes 24n+13 see A139530
24n+17 is prime see A139531, primes 24n+17 see A107181
24n+19 is prime see A139532, primes 24n+19 see A141373
24n+23 is prime see A131210, primes 24n+23 see A134517

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Table[(Prime[n]-5)/24,{n,800}],IntegerQ] (* Harvey P. Dale, Feb 25 2016 *)

A218010 Primes of the form (24*p + 1)/5, where p is a Fermat pseudoprime to base 2.

Original entry on oeis.org

1637, 2693, 20981, 22469, 40709, 42773, 49253, 65957, 69557, 123653, 140837, 235877, 451013, 623621, 626693, 716549, 1095557, 1370597, 1634693, 1761989, 2289461, 2459813, 2548229, 2563493, 2821733, 3414533, 4091909, 4093637, 4910981, 5530901, 5727461
Offset: 1

Views

Author

Marius Coman, Oct 18 2012

Keywords

Comments

This is a subsequence of A107003.
The corresponding values of p: 341, 561, 4371, 4681, 8481, 8911, 10261, 13741, 14491, 25761, 29341, 49141, 93961, 129921, 130561, 149281, 228241, 285541, 340561, 439291, 512461, 530881, 532171, 534061, 597871, 736291, 764491, 782341, 852841, 903631, 951481.
From the first 128 natural solutions of this equation ((24*p + 1)/5, where p is Fermat pseudoprime to base 2), 31 are primes (the ones from the sequence above), 51 are products (not necessarily squarefree) of two prime factors and 41 are products of three prime factors; only 5 of them are products of four prime factors.
Conjecture: There is no absolute Fermat pseudoprime m for which n = (5*m - 1)/24 is a natural number (checked for the first 300 Carmichael numbers; if true, then the formula is a criterion to separate pseudoprimes at least from a subset of primes, because there are 37 primes m from the first 300 primes for which n = (5*m - 1)/24 is a natural number).
3380740301 is a counterexample to the conjecture. - Charles R Greathouse IV, Dec 07 2014

Crossrefs

Programs

  • PARI
    is(n)=my(t); n%48==5 && isprime(n) && !isprime(t=(5*n-1)/24) && Mod(2,t)^t==2 \\ Charles R Greathouse IV, Dec 07 2014

Extensions

Corrected by Charles R Greathouse IV, Dec 07 2014
Showing 1-8 of 8 results.