cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A154941 Sophie Germain primes in A154939.

Original entry on oeis.org

3, 5, 11, 131, 419, 1409, 2069, 3449, 3761, 3911, 6899, 7079, 7151, 9539, 9791, 10529, 10691, 11321, 11831, 14741, 15269, 17291, 22079, 27281, 27809, 30449, 34439, 45131, 48479, 52289, 54251, 64439, 70901, 75389, 78839, 85691, 101411, 102911
Offset: 1

Views

Author

Keywords

Comments

2*3+1=7, 5*2+1=11, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p],If[PrimeQ[p*2+1],AppendTo[lst,p]]],{n,8!}];lst
    Select[Prime[Range[10000]],AllTrue[{2#+1,(#-1)(#+1)+#,(#-1)(#+1)-#},PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)

A155006 Primes p such that (p-2)*(p+2)-+2*p are primes.

Original entry on oeis.org

5, 7, 13, 23, 37, 43, 73, 167, 233, 263, 433, 557, 587, 593, 607, 727, 857, 1153, 1597, 1627, 1753, 2143, 2663, 2713, 3433, 3607, 3863, 3947, 4027, 4363, 4423, 4673, 5147, 5477, 5623, 5807, 5903, 6277, 7237, 7333, 7577, 8287, 8647, 8837, 8887, 9043, 10067
Offset: 1

Views

Author

Keywords

Comments

3*7-10=11, 3*7+10=31,...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]],AllTrue[(#-2)(#+2)+{2#,-2#},PrimeQ]&] (* Harvey P. Dale, Jan 01 2025 *)

A155007 Primes p such that (p-3)*(p+3)-+3*p are primes.

Original entry on oeis.org

7, 17, 37, 113, 157, 227, 283, 293, 313, 347, 443, 587, 787, 883, 1063, 1097, 1237, 1303, 1327, 1427, 1567, 1723, 1933, 1973, 2087, 2347, 2467, 2687, 2777, 3457, 3593, 4447, 4703, 4793, 4967, 5737, 5827, 6317, 6607, 6793, 6857, 8297, 8563, 8803, 9433
Offset: 1

Views

Author

Keywords

Comments

4*10-3*7=19, 4*10+3*7=61, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,7!}];lst

A155008 Primes p such that (p-a)*(p+a)-+a*p are primes,a=4.

Original entry on oeis.org

3, 5, 7, 11, 19, 29, 31, 59, 101, 139, 239, 271, 829, 1031, 1201, 1439, 1511, 1531, 2251, 2609, 3929, 4349, 4969, 5449, 5639, 5711, 5801, 5881, 5981, 6521, 6569, 6701, 6949, 6959, 8221, 8831, 9001, 9181, 9209, 9419, 9511, 9929, 10139, 10711, 11839, 11981
Offset: 1

Views

Author

Keywords

Comments

3*11-28=5, 3*11+28=61, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-4)*(p+4)-4*p]&&PrimeQ[(p-4)*(p+4)+4*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1500]],AllTrue[(#-4)(#+4)+{4#,-4#},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 27 2020 *)

A155009 Primes p such that (p-a)*(p+a)-+a*p are primes,a=5.

Original entry on oeis.org

2, 7, 11, 17, 19, 23, 41, 43, 61, 67, 107, 109, 131, 137, 179, 197, 263, 269, 331, 353, 397, 641, 677, 743, 859, 941, 1163, 1171, 1213, 1303, 1319, 1433, 1447, 1453, 1543, 1601, 1783, 2221, 2351, 2371, 2417, 2503, 2657, 2689, 2791, 2797, 2909, 3037, 3301
Offset: 1

Views

Author

Keywords

Comments

1*12-35=-23, 1*12+35=47; 6*16-55=96-55=41, 6*16-55=96+55=151, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-5)*(p+5)-5*p]&&PrimeQ[(p-5)*(p+5)+5*p],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[500]],AllTrue[(#-5)(#+5)+{5#,-5#},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 01 2016 *)

A154942 Primes p such that (p-1)*p*(p+1)-p-2 and (p-1)*p*(p+1)+p+2 are primes.

Original entry on oeis.org

3, 5, 29, 71, 113, 263, 1103, 2339, 3203, 3413, 3593, 3659, 3719, 4421, 5939, 6269, 7841, 9011, 9029, 13121, 13841, 14423, 15671, 17033, 19073, 22079, 22811, 26783, 27851, 28949, 29303, 30839, 31973, 32063, 32141, 34301, 38543, 38873, 39119
Offset: 1

Views

Author

Keywords

Comments

2*3*4=24-3-2=19, 2*3*4=24+3+2=29, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*p*(p+1)-p-2]&&PrimeQ[(p-1)*p*(p+1)+p+2],AppendTo[lst,p]],{n,8!}];lst
    prQ[n_]:=Module[{x=n^3-n,y=n+2},And@@PrimeQ[{x+y,x-y}]]; Select[Prime[ Range[4200]],prQ] (* Harvey P. Dale, Jun 21 2012 *)

A154944 Primes p such that (p-1)*p*(p+1)-p+2 and (p-1)*p*(p+1)+p-2 are primes.

Original entry on oeis.org

19, 37, 67, 151, 367, 859, 1471, 2791, 2971, 3061, 4357, 4447, 4507, 6367, 7159, 7237, 7591, 8311, 8647, 11617, 12211, 12601, 13249, 14947, 15271, 15661, 16699, 18097, 19777, 20149, 20347, 20947, 21019, 22741, 23311, 23857, 24019, 25867, 26701
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*p*(p+1)-p+2]&&PrimeQ[(p-1)*p*(p+1)+p-2],AppendTo[lst,p]],{n,8!}];lst

A155010 Primes p such that (p-a)*(p+a)-+a*p and (p-b)*(p+b)-+b*p are primes, a=2,b=3.

Original entry on oeis.org

7, 37, 587, 28703, 35677, 36857, 99367, 326707, 361687, 578167, 613573, 619007, 656407, 688783, 702203, 713467, 874823, 922027, 940573, 1045763, 1057907, 1244687, 1371157, 1419697, 1555187, 1665767, 1687187, 1687327, 1799453
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p]&&PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,9!}];lst
    Select[Prime[Range[200000]],AllTrue[Flatten[{(#-2)(#+2)+{2#,-2#},(#-3)(#+3)+ {3#,-3#}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 26 2015 *)
Showing 1-8 of 8 results.